CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

5: Analysis of Algorithms

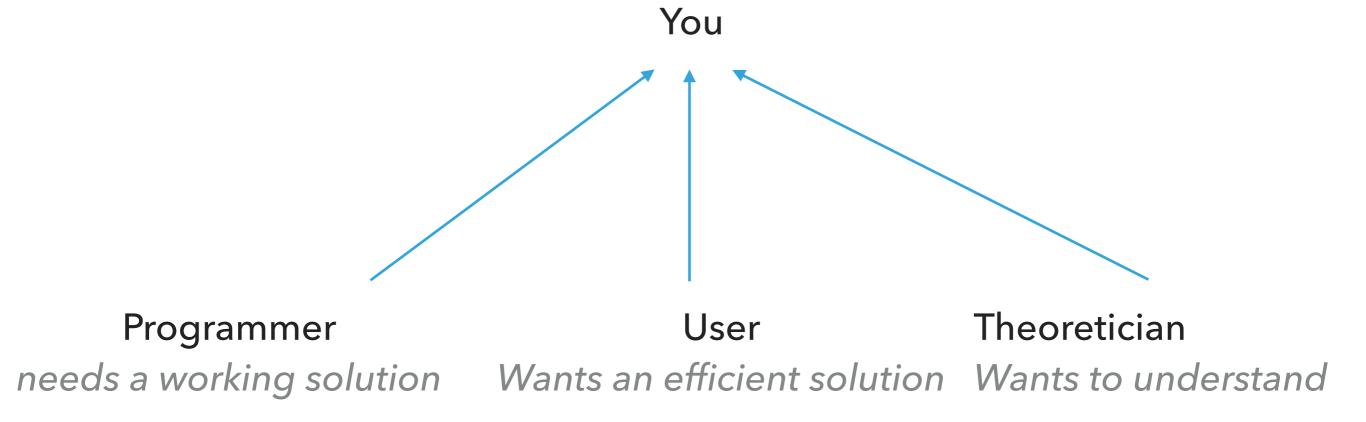


Alexandra Papoutsaki she/her/hers

Lecture 5: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption

Different Roles



Why analyze algorithmic efficiency?

- Predict performance.
- Compare algorithms that solve the same problem.
- Provide guarantees.
- Understand theoretical basis.
- Avoid performance bugs.

Why is my program so slow? Why does it run out of memory?

We can use a combination of experiments and mathematical modeling.

Lecture 5: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption

EXPERIMENTAL ANALYSIS OF RUNNING TIME

3-SUM: Given n distinct numbers, how many unordered triplets sum to 0?

- Input: 30 -40 -20 -10 40 0 10 5
- Output: 4
 - **30** -40 10
 - **30** -20 -10
 - -40 40 0
 - -10 0 10

3-SUM: Brute force algorithm

```
public class ThreeSum {
public static int count(int[] a) {
         int n = a.length;
         int count = 0;
         for (int i = 0; i < n; i++) {
             for (int j = i+1; j < n; j++) {
                  for (int k = j+1; k < n; k++) {
                       if (a[i] + a[j] + a[k] == 0) {
                            count++;
                  }
                                         public static void main(String[] args) {
                                                  String filename = args[0];
         return count;
                                                  int fileSize = Integer.parseInt(args[1]);
                                                  try {
                                                       Scanner scanner = new Scanner(new File(filename));
                                                       int intList[] = new int[fileSize];
                                                       int i=0;
                                                       while(scanner.hasNextInt()){
                                                           intList[i++]=scanner.nextInt();
                                                       Stopwatch timer = new Stopwatch();
                                                       int count = count(intList);
                                                       System.out.println("elapsed time = " + timer.elapsedTime());
                                                       System.out.println(count);
                                                  catch (IOException ioe) {
                                                       throw new IllegalArgumentException("Could not open " + filename, ioe);
```

Empirical Analysis

Input: 8ints.txt
Output: 4 and 0

Input: 1Kints.txt

Output: 70 and 0.081

Input: 2Kints.txt

^b Output: 528 and 0.38

Input: 2Kints.txt

Output: 528 and 0.371

Input: 4Kints.txt

Output: 4039 and 2.792

Input: 8Kints.txt

Output: 32074 and 21.623

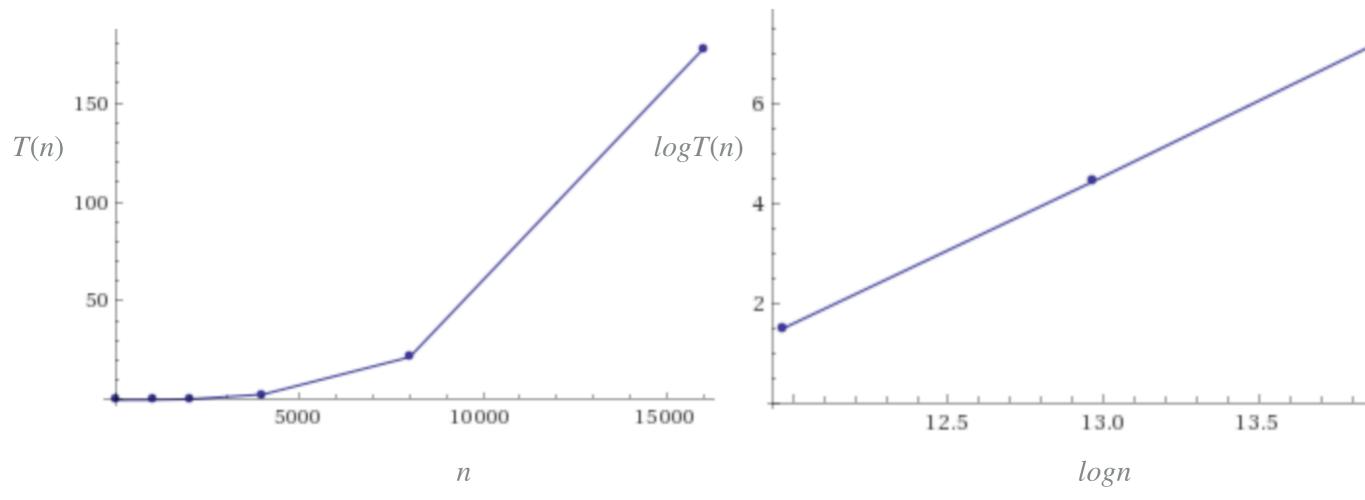
Input: 16Kints.txt

Output: 255181 and 177.344

Input size	Time
8	0
1000	0.081
2000	0.38
2000	0.371
4000	2.792
8000	21.623
16000	177.344

Plots and log-log plots

Straight line of slope 3



- Regression: $T(n) = an^b$ (power-law).
- $\log T(n) = b \log n + \log a$, where b is slope.
- Experimentally: $\sim 0.42 \times 10^{-10} n^3$, in our example for ThreeSum.

EXPERIMENTAL ANALYSIS OF RUNNING TIMI	EXPERIMENTAL	ANALYSIS	OF RUNN	ING TIME
---------------------------------------	---------------------	-----------------	----------------	-----------------

Input size	Time
8	0
1000	0.081
2000	0.38
4000	2.792
8000	21.623
16000	177.344

Doubling Hypothesis

- Doubling input size increases running time by a factor of $\frac{T(n)}{T(n/2)}$
- Run program doubling the size of input. Estimate factor of growth:

$$\frac{T(n)}{T(n/2)} = \frac{an^b}{a(\frac{n}{2})^b} = 2^b.$$

- E.g., in our example, for pair of input sizes 8000 and 16000 the ratio $(\frac{177.344}{21.623})$ is 8.2 or ~8 which can be written as 2^3 , therefore b is approximately 3.
- ightharpoonup Assuming we know b, we can figure out a.
 - E.g., in our example, $T(16000) = 177.34 = a \times 16000^3$.
 - Solving for a we get $a = 0.42 \times 10^{-10}$.

Practice Time

Suppose you time your code and you make the following observations. Which function is the closest model of T(n)?

A.
$$n^2$$

B.
$$6 \times 10^{-4} n$$

C.
$$5 \times 10^{-9} n^2$$

D.
$$7 \times 10^{-9} n^2$$

Input size	Time
1000	0
2000	0.0
4000	0.1
8000	0.3
16000	1.3
32000	5.1

Answer

- C. $5 \times 10^{-9} n^2$
- Ratio is approximately 4, therefore b = 2.
- $T(32000) = 5.1 = a \times 32000^2$.
- Solving for $a = 4.98 \times 10^{-9}$.s

Input size	Time
1000	0
2000	0.0
4000	0.1
8000	0.3
16000	1.3
32000	5.1

Effects on Performance

- System independent effects: Algorithm + input data
 - ightharpoonup Determine b in power law relationships.
- System dependent effects: Hardware (e.g., CPU, memory, cache) + Software (e.g., compiler, garbage collector) + System (E.g., operating system, network, etc).
 - Popendent and independent effects determine a in power law relationships.
- Although it is hard to get precise measurements, experiments in Computer Science are cheap to run.

Lecture 5: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption

Total Running Time

- Popularized by Donald Knuth in the 60s in the four volumes of "The Art of Computer Programming".
 - Knuth won the Turing Award (The "Nobel" in CS) in 1974.
- In principle, accurate mathematical models for performance of algorithms are available.
- Total running time = sum of cost x frequency for all operations.
- Need to analyze program to determine set of operations.
- Exact cost depends on machine, compiler.
- Frequency depends on algorithm and input data.

Cost of Basic Operations

Add < integer multiply < integer divide < floating-point add < floating-point multiply < floating-point divide.</p>

Operation	Example	Nanoseconds
Variable declaration	int a	c_1
Assignment statement	a = b	c_2
Integer comparison	a < b	c_3
Array element access	a[i]	c_4
Array length	a.length	c_5
1D array allocation	new int[n]	c_6n
2D array allocation	new int[n][n]	$c_7 n^2$
string concatenation	s+t	c_8n

Example: 1-SUM

ightharpoonup How many operations as a function of n?

```
int count = 0;
for (int i = 0; i < n; i++) {
    if (a[i] == 0) {
        count++;
    }
}</pre>
```

Operation	Frequency
Variable declaration	2
Assignment	2
Less than	n+1
Equal to	n
Array access	n
Increment	n to $2n$

Example: 2-SUM

ightharpoonup How many operations as a function of n?

Operation	rrequency
Variable declaration	n+2
Assignment	n+2
Less than	1/2(n+1)(n+2)
Equal to	1/2n(n-1)
Array access	n(n-1)
Increment	$1/2n(n+1) \text{to} n^2$

Tilde Notation

- ightharpoonup Estimate running time (or memory) as a function of input size n.
- Ignore lower order terms.
 - ightharpoonup When n is large, lower order terms become negligible.

• Example 1:
$$\frac{1}{6}n^3 + 10n + 100$$
 ~ n^3

Example 2:
$$\frac{1}{6}n^3 + 100n^2 + 47 \sim n^3$$

Example 3:
$$\frac{1}{6}n^3 + 100n^{\frac{2}{3}} + \frac{1/2}{n} \sim n^3$$

▶ Technically
$$f(n) \sim g(n)$$
 means that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$

Simplification

- Cost model: Use some basic operation as proxy for running time.
 - E.g., array accesses
- Combine it with tilde notation.

Operation	Frequency	Tilde notation
Variable declaration	n+2	~ <i>n</i>
Assignment	n+2	~ <i>n</i>
Less than	1/2(n+1)(n+2)	$\sim n^2$
Equal to	1/2n(n-1)	$\sim n^2$
Array access	n(n-1)	$\sim n^2$
Increment	$1/2n(n+1) \text{to} n^2$	$\sim n^2$

 $\sim n^2$ array accesses for the 2-SUM problem

Back to the 3-SUM problem

Approximately how many array accesses as a function of input size n?

```
int count = 0;
for (int i = 0; i < n; i++) {
    for (int j = i+1; j < n; j++) {
        for (int k = j+1; k < n; k++) {
            if (a[i] + a[j] + a[k] == 0) {
                 count++;
            }
        }
    }
}</pre>
```

 n^3 array accesses.

Useful approximations

- ► Harmonic sum: $H_n = 1 + 1/2 + 1/3 + ... + 1/n$ ~ $\ln n$
- ► Triangular sum: 1 + 2 + 3 + ... + n ~ n^2
- Geometric sum: $1 + 2 + 4 + 8 + ... + n = 2n 1 \sim n$, when n power of 2.
- Binomial coefficients: $\binom{n}{k} \sim \frac{n^k}{k!}$ when k is a small constant.
- Use a tool like Wolfram alpha.

Practice Time

How many array accesses does the following code make?

```
int count = 0;
for (int i = 0; i < n; i++) {
    for (int j = i+1; j < n; j++) {
        for (int k = 1; k < n; k=k*2) {
            if (a[i] + a[j] >= a[k]) {
                count++;
            }
        }
}
```

A. n^2

B. $n^2 \log n$

C. n^3

D. $n^3 \log n$

MATHEMATICAL MODELS OF RUNNING TIME

Answer

• B. $n^2 \log n$

Lecture 5: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption

Order of growth

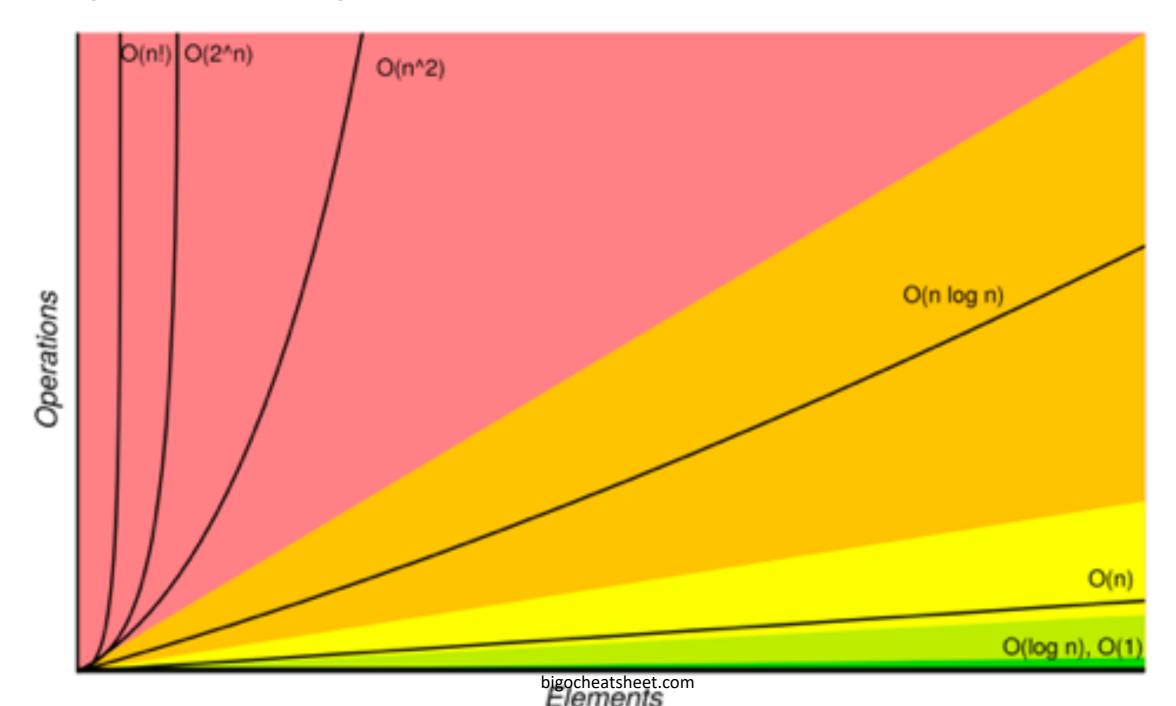
- ▶ Definition: If $f(n) \sim cg(n)$ for some constant c > 0, then the order of growth of f(n) is g(n).
 - Ignore leading coefficients.
 - Ignore lower-order terms.
- We will use this definition in the mathematical analysis of the running time of our programs as the coefficients depend on the system.
- E.g., the order of growth of the running time of the ThreeSum program is n^3 .

Common order of growth classifications

- Good news: only a small number of function suffice to describe the order-of-growth of typical algorithms.
- ▶ 1: constant
 - Doubling the input size, won't affect the run-time. Holy-grail
- $\log n$: logarithmic
 - Doubling the input size, will increase the runtime by a constant.
- n: linear
 - Doubling the input size, will result to double the run-time.
- $n \log n$: linearithmic
 - Doubling the input size, will result to a bit longer than double the run-time.
- n^2 : quadratic
 - Doubling the input size, will result to four times as much run-time.
- n^3 : cubic
 - Doubling the input size, will result to eight times as much run-time.
- $^{\triangleright}$ 2ⁿ: exponential
 - When you increase the input by some constant amount, the time taken is doubled.
- ▶ *n*!: factorial
 - Runtime grows exponentially with the size of the input

From slowest growing to fastest growing

1 < $\log n$ < n < $n \log n$ < n^2 < n^3 < 2^n < n!



Common order of growth classifications

Order-of-growth	Name	Example code	T(n)/T(n/2)
1	Constant	a=b+c	1
log n	Logarithmic	while(n>1){n=n/2;}	~ 1
n	Linear	for(int i=0; i <n; i++{<="" td=""><td>2</td></n;>	2
$n \log n$	Linearithmic	<pre>for (i = 1; i <= n; I++){ int x = n; while (x > 0) x -= i; }</pre>	~ 2
n^2	Quadratic	for(int i=0; i <n; for(int="" i++)="" j="0;" j++){<="" j<n;="" td="" {=""><td>4</td></n;>	4
n^3	Cubic	for(int i=0; i <n; for(int="" i++)="" j="0;" j++){="" j<n;="" k="0;" k++){<="" k<n;="" td="" {=""><td>8</td></n;>	8

Lecture 5: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption

Basics

- ▶ Bit: 0 or 1.
- Byte: 8 bits.
- ► Megabyte (MB): 2²⁰ bytes.
- ► Gigabyte: 2³⁰ bytes.

Typical use of memory for primitives and arrays

boolean: 1 byte

byte: 1 byte

char: 2 bytes

short: 2 bytes

int: 4 bytes

float: 4 bytes

long: 8 bytes

double: 8 bytes

Array overhead: 24 bytes

char[n]:2n+24 bytes

int[n]:4n+24 bytes

double[n]:8n+24 bytes

Typical use of memory for objects

```
Object overhead: 16 bytes
Reference: 8 bytes
Padding: padded to be a multiple of 8 bytes
Example:

            public class Date {
                 private int day;
                  private int month;
                  private int year;
```

16 bytes overhead + 3x4 bytes for ints + 4 bytes padding =
 32 bytes

Practice Time

 $^{\triangleright}$ How much memory does WeightedQuickUnionUF use as a function of n?

```
public class WeightedQuickUnionUF{
    private int[] parent;
    private int[] size;
    private int count;
    public WeightedQuickUnionUF(int n) {
        parent = new int[n];
        size = new int[n];
        count = 0;
A. \sim 4n bytes
B. \sim 8n bytes
C. \sim 4n^2 bytes
D. \sim 8n^2 bytes
```

Answer

B. $\sim 8n$ bytes

- 16 bytes for object overhead
- Each array: 8 bytes for reference + 24 overhead + 4n for integers
- 4 bytes for int
- 4 bytes for padding
- Total $88 + 8n \sim 8n$

Lecture 5: Analysis of Algorithms

- Introduction
- Experimental Analysis of Running Time
- Mathematical Models of Running Time
- Order of Growth Classification
- Analysis of Memory Consumption

Readings:

- Recommended Textbook:
 - Chapter 1.4 (pages 172-196, 200-205)
- Recommended Textbook Website:
 - Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

Code

Lecture 5 code

Practice Problems:

1.4.1-1.4.9