
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

4: The Catch-All Java Lecture

FUNDAMENTALS

Alexandra Papoutsaki
she/her/hers

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: The Catch-All Java Lecture

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

2

PACKAGES

What is a package?

‣ A grouping of related classes and interfaces that provides access
protection and name space management.

‣ e.g., java.lang for fundamental classes or java.io for classes related to
reading input and writing output.

‣ Packages correspond to folders/directories.

‣ Lower-case names.

‣ package whatevername; at top of file.

‣ import graphics.*; for including all classes/interfaces.

‣ or import graphics.Circle; for more specific access.

3

https://docs.oracle.com/javase/tutorial/java/package/packages.html

http://java.io
https://docs.oracle.com/javase/tutorial/java/package/packages.html

PACKAGES

Access modifiers

4

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

No modifier Y Y N N

private Y N N N

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: The Catch-All Java Lecture

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

5

JAVADOC

Java Documentation Generation System

‣ Reads JavaDoc comments and gives HTML pages

‣ JavaDoc comment = description written in HTML + tags

‣ Enclosed in /** */

‣ Must precede class, variable, constructor or method declaration

‣ For class:

‣ @author author name – classes and interfaces

‣ @version date - classes and interfaces

‣ For method:

‣ @param param name and description – methods and constructors

‣ @return value returned, if any – methods

‣ @throws description of any exceptions thrown - methods

6

https://www.oracle.com/technetwork/articles/java/index-137868.html

https://www.oracle.com/technetwork/articles/java/index-137868.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: The Catch-All Java Lecture

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

7

MEMORY MANAGEMENT

Stack vs heap

8
 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)

 }

Call stack

St
ac

k
fra

m
es

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Heap memory
‣ Dynamic memory allocation

‣ New objects are stored there

‣ Strings are stored in a “string pool”

‣ Garbage collector frees up objects that do not get referenced anymore.

‣ Slow but much larger

‣ Static memory allocation in Last-In-First-Out Order

‣ Whenever we call a method, a new frame is pushed to the top

‣ A method stack frame contains primitives and references to objects used in
this method.

‣ When the method finishes, the stack frame gets popped

‣ Fast but limited in space

MEMORY MANAGEMENT

Stack vs heap

9

main()

Call stack

Stack memory

St
ac

k
fra

m
es

int number = 1234

‣ Static memory allocation in Last-In-First-Out Order

‣ Whenever we call a method, a new frame is pushed to the top

‣ A method stack frame contains primitives and references to objects used in
this method.

‣ When the method finishes, the stack frame gets popped

‣ Fast but limited in space

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)

 }

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

Heap memory
‣ Dynamic memory allocation

‣ New objects are stored there

‣ Strings are stored in a “string pool”

‣ Garbage collector frees up objects that do not get referenced anymore.

‣ Slow but much larger

MEMORY MANAGEMENT

Stack vs heap

10

main()

Call stack

Heap memory
Stack memory

St
ac

k
fra

m
es

String name
int number = 1234

‣ Static memory allocation in Last-In-First-Out Order

‣ Whenever we call a method, a new frame is pushed to the top

‣ A method stack frame contains primitives and references to objects
used in this method.

‣ When the method finishes, the stack frame gets popped

‣ Fast but limited in space

‣ Dynamic memory allocation

‣ New objects are stored there

‣ Strings are stored in a “string pool”

‣ Garbage collector frees up objects that do not get referenced anymore.

‣ Slow but much larger

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 Person aden = null;
 aden = new Person(name, number)

 }

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

String pool

“Aden”

MEMORY MANAGEMENT

Stack vs heap

11

main()

Call stack

Heap memory
Stack memory

St
ac

k
fra

m
es

Person aden
String name

int number = 1234

‣ Static memory allocation in Last-In-First-Out Order

‣ Whenever we call a method, a new frame is pushed to the top

‣ A method stack frame contains primitives and references to objects used in
this method.

‣ When the method finishes, the stack frame gets popped

‣ Fast but limited in space

‣ Dynamic memory allocation

‣ New objects are stored there

‣ Strings are stored in a “string pool”

‣ Garbage collector frees up objects that do not get referenced anymore.

‣ Slow but much larger

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 String name2 = “Aden”;
 Person aden = null;
 aden = new Person(name, number)

 }

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

String pool

“Aden”

MEMORY MANAGEMENT

Stack vs heap

12

String pool

“Aden”

main

Call stack

Heap memory
Stack memory

St
ac

k
fra

m
es

int phoneNumber = 1234
String name

this

Person aden
String name

int number = 1234

‣ Static memory allocation in Last-In-First-Out Order

‣ Whenever we call a method, a new frame is pushed to the top

‣ A method stack frame contains primitives and references to objects used in
this method.

‣ When the method finishes, the stack frame gets popped

‣ Fast but limited in space

‣ Dynamic memory allocation

‣ New objects are stored there

‣ Strings are stored in a “string pool”

‣ Garbage collector frees up objects that do not get referenced anymore.

‣ Slow but much larger

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 String name2 = “Aden”;
 Person aden = null;
 aden = new Person(name, number)

 }

Person

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

“Aden” | 1234

MEMORY MANAGEMENT

Stack vs heap

13

String pool

“Aden”

main

Call stack

Heap memory
Stack memory

St
ac

k
fra

m
es

Person aden
String name

int number = 1234

‣ Static memory allocation in Last-In-First-Out Order

‣ Whenever we call a method, a new frame is pushed to the top

‣ A method stack frame contains primitives and references to objects used in
this method.

‣ When the method finishes, the stack frame gets popped

‣ Fast but limited in space

‣ Dynamic memory allocation

‣ New objects are stored there

‣ Strings are stored in a “string pool”

‣ Garbage collector frees up objects that do not get referenced anymore.

‣ Slow but much larger

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 String name2 = “Aden”;
 Person aden = null;
 aden = new Person(name, number)

 }

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

“Aden” | 1234

MEMORY MANAGEMENT

Stack vs heap

14

String pool

“Aden”

Call stack

Heap memory
Stack memory

St
ac

k
fra

m
es

‣ Static memory allocation in Last-In-First-Out Order

‣ Whenever we call a method, a new frame is pushed to the top

‣ A method stack frame contains primitives and references to objects used in
this method.

‣ When the method finishes, the stack frame gets popped

‣ Fast but limited in space

‣ Dynamic memory allocation

‣ New objects are stored there

‣ Strings are stored in a “string pool”

‣ Garbage collector frees up objects that do not get referenced anymore.

‣ Slow but much larger

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 String name2 = “Aden”;
 Person aden = null;
 aden = new Person(name, number)

 }

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

“Aden” | 1234

MEMORY MANAGEMENT

Stack vs heap

15

Call stack

Heap memory
Stack memory

St
ac

k
fra

m
es

‣ Static memory allocation in Last-In-First-Out Order

‣ Whenever we call a method, a new frame is pushed to the top

‣ A method stack frame contains primitives and references to objects used in
this method.

‣ When the method finishes, the stack frame gets popped

‣ Fast but limited in space

‣ Dynamic memory allocation

‣ New objects are stored there

‣ Strings are stored in a “string pool”

‣ Garbage collector frees up objects that do not get referenced anymore.

‣ Slow but much larger

 public static void main(String args[]) {
 int number = 1234;
 String name = “Aden”;
 String name2 = “Aden”;
 Person aden = null;
 Person aden = new Person(name, number)

 }

public class Person {

 private String name;
 private int phoneNumber;

 public Person(String name, int phoneNumber) {
 this.name = name;
 this.phoneNumber = phoneNumber;
 }

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: The Catch-All Java Lecture

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

16

EXCEPTIONS

Exceptions are exceptional or unwanted events

▸ That is operations that disrupt the normal flow of the program.

▸ E.g., divide a number by zero, run out of memory, ask for a file that
does not exist, etc.

▸ When an error occurs within a method, the method throws an exception
object that contains its name, type, and state of program.

▸ The runtime system looks for something to handle the exception among
the call stack, the list of methods called (in reverse order) by main to
reach the error.

▸ The exception handler catches the exception. If no appropriate handler,
the program terminates.

17

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

EXCEPTIONS

java.lang.Throwable

18

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

Throwable

Exception Error

OutOfMemory
Error

Other Error
subclasses

Other
Exception
subclasses

IOExceptionRuntimeException

NullPointer
Exception

Arithmetic
Exception

IndexOutOfBounds
Exception

Other
RuntimeException

subclasses

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

EXCEPTIONS

Three major types of exception classes

▸ Error: rare internal system errors that an application cannot recover from.

▸ Typically not caught and program has to terminate.

▸ e.g., java.lang.StackOverflowError (for stack) or java.lang.OutOfMemoryError (for heap)

▸ Exception: errors caused by program and external circumstances.

▸ Can be caught and handled.

▸ e.g., java.io.IOException

▸ RuntimeException: programming errors that can occur in any Java method.

▸ Method not required to declare that it throws any of the exception.

▸ e.g., java.lang.IndexOutOfBoundsException, java.lang.NullPointerException,
java.lang.ArithmeticException

▸ Unchecked exceptions: programming logic errors that are unrecoverable. Error and RuntimeException and
subclasses, e.g., java.lang.NullPointerException, java.lang.IndexOutOfBoundsException

▸ Checked exceptions: All other exceptions - programmer has to check and deal with them.

19

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

EXCEPTIONS

Handling exceptions

▸ Three operations:

▸ Declaring an exception

▸ Throwing an exception

▸ Catching an exception

method1(){
 try {
 method2();
 } catch (Exception e) {
 System.err.println(e.getMessage());
 }
}
method2() throws Exception{
 if(some error) {
 throw new Exception();
 }
}

20

https://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

CATCH EXCEPTION

DECLARE EXCEPTION
THROW EXCEPTION

https://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

EXCEPTIONS

Declaring exceptions

▸ Every method must state the types of checked exceptions it might
throw in the method header so that the caller of the method is
informed of the exception.

▸ System errors and runtime exceptions can happen to any code,
therefore Java does not require explicit declaration of
unchecked exceptions.

▸ public void exceptionalMethod() throws IOException{

▸ throws: the method might throw an exception. Can also throw
multiple exceptions, separated by comma.

21

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

EXCEPTIONS

Throwing exceptions

▸ If an error is detected, then the program can throw an exception.

▸ e.g., you have asked for age and the user gave you a string.
You can throw an IllegalArgumentException.

▸ throw new IllegalArgumentException(“Wrong format for age”);

▸ The argument in the constructor is called the exception
message. You can access it by invoking getMessage().

▸ throws FOR DECLARING AN EXCEPTION,
▸ throw TO THROW AN EXCEPTION

22

https://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html

EXCEPTIONS

Catching exceptions

▸ An exception can be caught and handled in a try-catch block.

method(){
 try {
 statements; //statements that could throw exception
 } catch (Exception1 e1) {
 //handle e1;
 }
 catch (Exception2 e2) {
 //handle e2;
 }
}
▸ If no exception is thrown, then the catch blocks are skipped.

▸ If an exception is thrown, the execution of the try block ends at the responsible statement.

▸ The order of catch blocks is important. A compile error will result if a catch block for a superclass type appears before
a catch block for a subclass. E.g., catch(Exception ex) followed by catch(RuntimeException ex) won’t compile.

▸ If a method declares a checked exception (e.g., void p1() throws IOException) and you invoke it, you have to
enclose it in a try catch block or declare to throw the exception in the calling method (e.g., try{ p1();} catch
(IOException e){…}.

23

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

EXCEPTIONS

finally block

‣ Used when you want to execute some code regardless of whether
an exception occurs or is caught

method(){
 try {
 statements; //statements that could thrown exception
 } catch (Exception1 e) {
 //handle e; catch is optional.
 }
 finally{
 //statements that are executed no matter what;
 }
}
‣ The finally block will execute no matter what. Even after a return.

24

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

EXCEPTIONS

/**
 * Illustrates try,catch, finally blocks
 * @author https://docs.oracle.com/javase/tutorial/essential/exceptions/putItTogether.html
 *
 */
import java.io.*;
import java.util.List;
import java.util.ArrayList;

public class ListOfNumbers {
// Note: This class will not compile yet.

private List<Integer> list;
private static final int SIZE = 10;

public ListOfNumbers() {
list = new ArrayList<Integer>(SIZE);
for (int i = 0; i < SIZE; i++) {

list.add(new Integer(i));
}

}

public void writeList() {
PrintWriter out = null;

try {
System.out.println("Entering" + " try statement");

out = new PrintWriter(new FileWriter("OutFile.txt"));
for (int i = 0; i < SIZE; i++) {

out.println("Value at: " + i + " = " + list.get(i));
}

} catch (IndexOutOfBoundsException e) {
System.err.println("Caught IndexOutOfBoundsException: " + e.getMessage());

} catch (IOException e) {
System.err.println("Caught IOException: " + e.getMessage());

} finally {
if (out != null) {

System.out.println("Closing PrintWriter");
out.close();

} else {
System.out.println("PrintWriter not open");

}
}

}

}

25

https://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

EXCEPTIONS

Practice Time

‣ 1. Is there anything wrong with this exception handler?

try {

} catch (Exception e) {

} catch (ArithmeticException a) {

}

26

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

EXCEPTIONS

Answers

‣ 1. The ordering matters! The second handler can never be
reached and the code won’t compile.

27

https://docs.oracle.com/javase/tutorial/essential/exceptions/QandE/answers.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/QandE/answers.html

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

28

Lecture 4: The Catch-All Java Lecture

ASSERTIONS

Pre and post conditions

‣ Pre-condition: Specification of what must be true for
method to work properly, typically in terms of its
parameters.

‣ Post-condition: Specification of what must be true at end
of method if precondition was met before execution.

29

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

ASSERTIONS

Assertions

‣ Assertion is a statement in the Java programming language that enables you to test your
assumptions about your program.

‣ Each assertion contains a boolean expression that you believe will be true when the assertion
executes. If it is not true, the system will throw an error. By verifying that the boolean expression
is indeed true, the assertion confirms your assumptions about the behavior of your program,
increasing your confidence that the program is free of errors.

‣ By convention, preconditions on public methods are enforced by explicit checks that throw
particular, specified exceptions. You can use them for testing parameters of non-public methods.

‣ assert Expression1 [: Expression2];

‣ When the system runs the assertion, it evaluates the boolean Expression1 and if it
is false throws an AssertionError with no detail message. If the optional Expression2
is included and assertion fails, it passes Expression2 in the constructor of
AssertionError.

30

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

31

Lecture 4: The Catch-All Java Lecture

TEXT I/O

I/O streams

‣ Input stream: a sequence of data into the program.

‣ Output stream: a sequence of data out of the program.

‣ Stream sources and destinations include disk files, keyboard,
peripherals, memory arrays, other programs, etc.

‣ Data stored in variables, objects and data structures are temporary
and lost when the program terminates. Streams allow us to save
them in files, e.g., on disk or CD (!)

‣ Streams can support different kinds of data: bytes, principles,
characters, objects, etc.

32

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/tutorial/essential/io/streams.html

TEXT I/O

Files

‣ Every file is placed in a directory in the file system.

‣ Absolute file name: the file name with its complete path and drive
letter.

‣ e.g., on Windows: C:\apapoutsaki\somefile.txt

‣ On Mac/Unix: /home/apapoutsaki.somefile.txt

‣ File: contains methods for obtaining file properties, renaming, and
deleting files. Not for reading/writing!

‣ CAUTION: DIRECTORY SEPARATOR IN WINDOWS IS \, WHICH IS SPECIAL CHARACTER IN JAVA. SHOULD BE
“\\” INSTEAD.

TEXT I/O

/**
 * Demonstrates File class and its operations.
 * @author https://liveexample.pearsoncmg.com/html/TestFileClass.html
 *
 */

import java.io.File;
import java.util.Date;

public class TestFile {
 public static void main(String[] args) {
 File file = new File("some.text");
 System.out.println("Does it exist? " + file.exists());
 System.out.println("The file has " + file.length() + " bytes");
 System.out.println("Can it be read? " + file.canRead());
 System.out.println("Can it be written? " + file.canWrite());
 System.out.println("Is it a directory? " + file.isDirectory());
 System.out.println("Is it a file? " + file.isFile());
 System.out.println("Is it absolute? " + file.isAbsolute());
 System.out.println("Is it hidden? " + file.isHidden());
 System.out.println("Absolute path is " + file.getAbsolutePath());
 System.out.println("Last modified on " + new Date(file.lastModified()));
 }
}

TEXT I/O

Writing data to a text file

▸ PrintWriter output = new PrintWriter(new
File(“filename”));

▸ New file will be created. If already exists, discard.

▸ Invoking the constructor may throw an I/O Exception…

▸ output.print and output.println work with Strings,
and primitives.

▸ Always close a stream!

TEXT I/O

/**
 * Demonstrates how to write to text file.
 * @author https://liveexample.pearsoncmg.com/html/WriteData.html
 *
 */

import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;

public class WriteData {
public static void main(String[] args) {

PrintWriter output = null;
try {

output = new PrintWriter(new File("addresses.txt"));
// Write formatted output to the file
output.print("Alexandra Papoutsaki ");
output.println(222);
output.print(“Tzu-Yi Chen ");
output.println(221);

} catch (IOException e) {
System.err.println(e.getMessage());

} finally {
if (output != null)

output.close();
}

}
}

TEXT I/O

Reading data from a text file

▸ java.util.Scanner reads Strings and primitives.

▸ Breaks input into tokens, demoted by whitespaces.

▸ To read from keyboard: Scanner input = new Scanner(System.in);

▸ To read from file: Scanner input = new Scanner(new
File(“filename”));

▸ Need to close stream as before.

▸ hasNext() tells us if there are more tokens in the stream. next() returns
one token at a time.

▸ Variations of next are nextLine(), nextByte(), nextShort(), etc.

TEXT I/O
/**
 * Demonstrates how to read data from a text file.
 * @author https://liveexample.pearsoncmg.com/html/ReadData.html
 *
 */

import java.io.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadData {
public static void main(String[] args) {

Scanner input = null;
// Create a Scanner for the file
try {

input = new Scanner(new File("addresses.txt"));

// Read data from a file
while (input.hasNext()) {

String firstName = input.next();
String lastName = input.next();
int room = input.nextInt();
System.out.println(firstName + " " + lastName + " " + room);

}
} catch (IOException e) {

System.err.println(e.getMessage());
} finally {

if (input != null)
input.close();

}

}
}

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

39

Lecture 4: The Catch-All Java Lecture

JAVA GUIS

GUIs

▸ AWT: The Abstract Windowing Toolkit is found in the package
java.awt

▸ Heavyweight components.

▸ Implemented with native code written for that particular computer.

▸ The AWT library was written in six weeks!

▸ Swing: Java 1.2 extended AWT with the javax.swing package.

▸ Lightweight components.

▸ Written in Java.

40

JAVA GUIS

JFrame

▸ javax.swing.JFrame inherits from java.awt.Frame

▸ The outermost container in an application.

▸ To display a window in Java:

▸ Create a class that extends JFrame.

▸ Set the size.

▸ Set the location.

▸ Set it visible.

41

JAVA GUIS

JFrame
import javax.swing.JFrame;

public class MyFirstGUI extends JFrame {

public MyFirstGUI() {
super("First Frame");
setSize(500, 300);
setLocation(100, 100);
setVisible(true);

}

public static void main(String[] args) {
MyFirstGUI mfgui = new MyFirstGUI();

}

}

42

JAVA GUIS

Closing a GUI

43

▸ The default operation of the quit button is to set the
visibility to false. The program does not terminate!

▸ setDefaultCloseOperation can be used to control this
behavior.

▸ mfgui.setDefaultCloseOperation(JFrame.EXIT_O
N_CLOSE);

▸ More options (hide, do nothing, etc).

JAVA GUIS

Basic components

44

JAVA GUIS

Interactive displays

45

JAVA GUIS

Adding JComponents to JFrame

46

import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;

public class GUIDemo extends JFrame {
public GUIDemo() {

// Container cp = getContentPane();
// cp.setLayout(new FlowLayout());
// cp.add(new JLabel("Demo"));
// cp.add(new JButton("Button"));
JPanel mainPanel = new JPanel(new FlowLayout());
mainPanel.add(new JLabel("Demo"));
mainPanel.add(new JButton("Button"));
setContentPane(mainPanel);
setSize(500, 300);
setVisible(true);

}

public static void main(String[] args) {
GUIDemo gd = new GUIDemo();
gd.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

47

Lecture 4: The Catch-All Java Lecture

GRAPHICS

Java Graphics

48

▸ Create arbitrary objects you want to draw:

▸ Rectangle2D.Double, Line.Double, etc.

▸ Constructors take x, y coordinates and dimensions, but don’t
actually draw items.

▸ All drawing takes place in paint method using a “graphics content”.

▸ Triggered implicitly by uncovering window or explicitly by calling
the repaint method.

▸ Adds repaint event to draw queue and eventually draws it.

GRAPHICS

Graphics context

49

▸ All drawing is done in paint method of component.

▸ public void paint (Graphics g)

▸ g is a graphics context provided by the system.

▸ “pen” that does the drawing.

▸ You call repaint() not paint().

▸ Need to import classes from java.awt.*, java.geom.*,
javax.swing.*

▸ See MyGraphicsDemo.

GRAPHICS

General graphics applications

50

▸ Create an extension of component (JPanel or JFrame)
and implement paint method in subclass.

▸ At start of paint() method cast g to Graphics2D.

▸ Call repaint() every time you want the component to be
redrawn.

GRAPHICS

Geometric objects

51

▸ Objects from classes Rectangle2D.Double, Line2D.Double,
etc. from java.awt.geom

▸ Constructors take parameters x, y, width, height but don’t draw
object.

▸ Rectangle2D.Double

▸ Ellipse2D.Double

▸ Arc2D.Double

▸ etc.

GRAPHICS

Drawing

52

▸ myObj.setFrame(x, y,
width, height): moves and
sets size of component

▸ g2.draw(myObj): gives
outline

▸ g2.fill(myObj): gives filled
version

▸ g2.drawString(“a
string”, x, y): draws string

GRAPHICS

java.awt.Color

53

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

54

Lecture 4: The Catch-All Java Lecture

EVENTS

Action listeners

55

‣ Define what should be done when a user performs certain operations.

‣ e.g., clicks a button, chooses a menu item, presses Enter, etc.

‣ The application should implement the ActionListener interface.

‣ An instance of the application should be registered as a listener on one or more components.

‣ Implement the actionPerformed method.

public class MultiButtonApp implements ActionListener {
 ...
 //where initialization occurs:
 button1.addActionListener(this);
 button2.addActionListener(this);

 ...
 public void actionPerformed(ActionEvent e) {
 if(e.getSource() == button1){
 //do something
 }
 }
}

https://docs.oracle.com/javase/tutorial/uiswing/events/actionlistener.html

https://docs.oracle.com/javase/7/docs/api/java/awt/event/ActionListener.html
https://docs.oracle.com/javase/tutorial/uiswing/events/actionlistener.html

EVENTS

Mouse listeners

56

‣ Define what should be done when a user enters a component, presses or releases one of the
mouse buttons.

‣ The application should implement the MouseListener interface

‣ Implement methods mousePressed, mouseReleased, mouseEntered, mouseExited, and
mouseClicked.

‣ Or extend the MouseAdapter class

‣ Which has default implementations of all of them.

public class MouseEventDemo ... implements MouseListener {
 //where initialization occurs:
 //Register for mouse events on blankArea and the panel.
 blankArea.addMouseListener(this);
 addMouseListener(this);
 ...

 public void mousePressed(MouseEvent e) {
 saySomething("Mouse pressed; # of clicks: "
 + e.getClickCount(), e);
 }

https://docs.oracle.com/javase/tutorial/uiswing/events/mouselistener.html

https://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseListener.html
https://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseAdapter.html
https://docs.oracle.com/javase/tutorial/uiswing/events/mouselistener.html

TODAY’S LECTURE IN A NUTSHELL

▸ Packages

▸ JavaDoc

▸ Memory Management

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Java GUIs

▸ Graphics

▸ Events

57

Lecture 4: The Catch-All Java Lecture

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Oracle’s guides:

▸ JavaDoc: https://www.oracle.com/technetwork/articles/java/index-137868.html

▸ Exceptions: https://docs.oracle.com/javase/tutorial/essential/exceptions/

▸ Assertions: https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

▸ I/O: https://docs.oracle.com/javase/tutorial/essential/io

▸ Writing Event Listeners: https://docs.oracle.com/javase/tutorial/uiswing/events/index.html

▸ Java Graphics: https://github.com/pomonacs622023fa/Handouts/blob/master/graphics.md

▸ Programming with GUIs: https://github.com/pomonacs622023fa/Handouts/blob/main/JavaGUI.pdf

▸ Swing/GUI Cheat Sheet: https://github.com/pomonacs622023fa/Handouts/blob/master/swing.md

▸ Recommended Textbook:

▸ Chapter 1.2 (Page 107)

58

Code
▸ Lecture 4 code

https://www.oracle.com/technetwork/articles/java/index-137868.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html
https://docs.oracle.com/javase/tutorial/essential/io
https://docs.oracle.com/javase/tutorial/uiswing/events/index.html
https://github.com/pomonacs622023fa/Handouts/blob/master/graphics.md
https://github.com/pomonacs622023fa/Handouts/blob/main/JavaGUI.pdf
https://github.com/pomonacs622023fa/Handouts/blob/master/swing.md
https://github.com/pomonacs622023fa/code/tree/main/Lecture4

