
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

3: Inheritance, Interfaces, and Generics

FUNDAMENTALS

Alexandra Papoutsaki
she/her/hers

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance, Interfaces, and Generics

▸ Inheritance

▸ Interfaces

▸ Generics

2

Some slides adopted from Algorithms, 4th Edition and Oracle tutorials

INHERITANCE

Inheritance

▸ When you want to create a new class and there is already a class that
includes some of the code that you want, you can derive your new class from
the existing class. → reuse code!

▸ Central concept in OOP.

▸ A class that is derived from another is called a subclass or child class.

▸ The class from which the subclass is derived is called a superclass or parent
class.

▸ Single inheritance: A class can only extend ONE AND ONLY one parent class.

▸ Multilevel inheritance: A class can extend a class which extends another class
etc.

3

INHERITANCE

Remember our Bicycle class?

/**
 * Represents a bicycle
 * @author https://docs.oracle.com/javase/tutorial/java/concepts/class.html
 *
 */
public class Bicycle {

 //instance variables
 private int cadence = 0;
 private int speed = 0;
 private int gear = 1;

 // the Bicycle class has one constructor
 public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear;
 cadence = startCadence;
 speed = startSpeed;
 }

 public void changeCadence(int newValue) {
 cadence = newValue;
 }

 public void changeGear(int newValue) {
 gear = newValue;
 }

 public void changeSpeed(int change) {
 speed = speed + change;
 }

 public int getCadence() {
 return cadence;
 }

 public void printGear() {
 System.out.println("Gear:" + gear);
 }

 public String toString() {
 return "cadence:" + cadence + " speed:" + speed + " gear:" + gear;
 }
}

4

INHERITANCE

A MountainBike is a specialized type of Bicycle

/**
 * Demonstrates concept of inheritance
 * @author https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
 *
 */
public class MountainBike extends Bicycle {

 // the MountainBike subclass adds one field
 private int seatHeight;

 // the MountainBike subclass has one constructor
 public MountainBike(int startHeight,
 int startCadence,
 int startSpeed,
 int startGear) {
 super(startCadence, startSpeed, startGear);
 seatHeight = startHeight;
 }

 // the MountainBike subclass adds one method
 public void setHeight(int newValue) {
 seatHeight = newValue;
 }
}

5

INHERITANCE

Inheritance

‣ The subclass inherits all the public and protected members.

‣ Not the private ones, although it can access them with appropriate getters and setters.

‣ The inherited fields can be used directly, just like any other fields.

‣ You can declare a field in the subclass with the same name as one in the superclass, thus
hiding it.

‣ AVOID
‣ You can write a new instance method in the subclass that has the same signature as the one

in the superclass, thus overriding it.

‣ You can write a new static method in the subclass that has the same signature as the one in
the superclass, thus hiding it.

‣ You can write a subclass constructor that invokes either implicitly the default constructor of
the superclass or by directly invoking it using the keyword super().

6

INHERITANCE

super keyword

‣ Refers to the direct parent of the subclass.

‣ super.variable: for hidden fields, avoid altogether.

‣ super.instanceMethod(): for overridden methods.

‣ super(args): to call the constructor of the super class.
First line in constructor of subclass.

7

INHERITANCE

Polymorphism

‣ The ability of an object to take many forms.

‣ Static Polymorphism: Happens during method overloading, that is more than one method
have the same name but different sets of parameters (signature).

‣ Also known as Compile-Time Polymorphism, Static binding, Compile-Time binding, Early
binding

‣ Dynamic Polymorphism: Happens during method overriding, that is a method with the same
signature exists both in parent and child class. When a parent reference is used to refer to a
child object, the method that will be executed with be defined at run-time, therefore will be
the child’s overridden method.

‣ Student student = new Student();  
Person person = new Student();

‣ Also known as Run-Time Polymorphism, Dynamic binding, Run-Time binding, Late binding

8

https://medium.com/@shanikae/polymorphism-explained-simply-7294c8deeef7

https://medium.com/@shanikae/polymorphism-explained-simply-7294c8deeef7

INHERITANCE

Example: Animal

public class Animal {
 public int legs = 2;
 public static String species = "Animal";
 public static void testClassMethod() {
 System.out.println("The static method in Animal");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Animal");
 }
}

9

INHERITANCE

Example: Cat

public class Cat extends Animal {
 public int legs = 4;
 public static String species = "Cat";
 public static void testClassMethod() {
 System.out.println("The static method in Cat");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Cat");
 }
}  

10

INHERITANCE

Hiding vs overriding

public static void main(String[] args) {
 Cat myCat = new Cat();
 myCat.testClassMethod(); //invoking a hidden method
 myCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(myCat.legs); //accessing a hidden field
 System.out.println(myCat.species); //accessing a hidden field
}

‣ Output:

The static method in Cat
The instance method in Cat
4
Cat

WHAT YOU WERE EXPECTING, RIGHT?

11

INHERITANCE

Hiding vs overriding

public static void main(String[] args) {
 Animal yourCat = new Cat();
 yourCat.testClassMethod(); //invoking a hidden method
 yourCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(yourCat.legs); //accessing a hidden field  
 System.out.println(yourCat.species); //accessing a hidden field
}

‣ Output:

The static method in Animal
The instance method in Cat
2
Animal

???

12

INHERITANCE

Hiding vs overriding

‣ Hiding: For fields (instance+static) and methods (static) the class
is determined at compile-time. Here, the compiler sees that
yourCat is declared as Animal.

‣ Overriding: For instance methods this is determined at run-time.
At this point, we know that yourCat is of type Cat.

‣ One form of polymorphism (dynamic) .

‣ You will get a compile-time error if you attempt to change an
instance method in the superclass to a static method in the
subclass and vice-versa.

13

INHERITANCE

All classes inherit class Object

‣ Directly if they do not extend any other class, or indirectly as descendants.

‣ Object class has built-in methods that are inherited.

‣ public boolean equals (Object other)

‣ Default behavior returns true only if same object.

‣ public String toString()

‣ Returns string representation of object – default is hexadecimal.

‣ Does not print the string.

‣ Typically needs to be overridden to be useful.

‣ public int hashCode()

‣ Unique identifier defined so that if a.equals(b) then a, b have same hashCode.

‣

14

INHERITANCE

final keyword

‣ Variable: only assigned once in its declaration or in
constructor — its value cannot be changed after
initialization.

‣ E.g., static final int PI = 3.14;

‣ Method: cannot be overridden by subclass.

‣ Class: cannot be extended.

15

INHERITANCE

Practice Time

public class ClassA {
 public void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public static void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

public class ClassB extends ClassA {
 public static void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

1. Which method overrides a method in the superclass?

2. Which method hides a method in the superclass?

3. What do the other methods do?

16

INHERITANCE

Answers

1. methodTwo.

2. methodFour.

3. They cause compile-time errors.
methodOne: “This static method cannot hide the instance method from ClassA”.
methodThree: “This instance method cannot override the static method from
ClassA”.

17

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance, Interfaces, and Generics

▸ Inheritance

▸ Interfaces

▸ Generics

18

INTERFACES

Interfaces

▸ Contracts of what a class must do, not how to do it, abstracting from
implementation.

▸ Central concept in OOP.

▸ In Java, an interface is a reference type (like a class), that contains only
constants, method signatures, default methods, and static methods.

▸ A class that implements an interface is obliged to implement its methods.

▸ Method bodies exist only for default methods and static methods.

▸ Interfaces cannot be instantiated (no new keyword). They can only be
implemented by classes or extended by other interfaces.

19

INTERFACES

Example

public interface Moveable{
 int turn(Direction direction, double radius, double speed);

 default int stop(){
 speed=0;
 }
}

public class Car implements Moveable{
 int turn(Direction direction, double radius, double speed){
 //code goes here  
 }  
}

public class Bicycle implements Moveable{
 int turn(Direction direction, double radius, double speed){
 //code goes here  
 }  
}

20

INTERFACES

Interfaces

▸ A class can implement multiple interfaces.

▸ class A implements Interface1, Interface2{…}

▸ An interface can extend multiple interfaces.

▸ public interface GroupedInterface extends
Interface1,Interface2{…}

21

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance, Interfaces, and Generics

▸ Inheritance

▸ Interfaces

▸ Generics

22

GENERICS

Generics

▸ Compile-time errors can be easier to fix than run-time errors.

▸ Java introduced generics (similar to templates in C++) to help move more
bugs to compile-time (easier to debug!), eliminate casting, and improve
abstraction. E.g.,

 List list = new ArrayList();
 list.add("hello");
 String s = (String) list.get(0);

 Is now:
 List<String> list = new ArrayList<String>();  
 list.add("hello");  
 String s = list.get(0); // no cast

▸ Generics enable types (that is classes and interfaces) to be used as
parameters when defining classes, interfaces, and methods.

23

GENERICS

Formal and actual type parameters

public interface List <E> {
 void add(E x);
 Iterator<E> iterator();
}

public interface Iterator<E> {
 E next();
 boolean hasNext();
}
▸ In the invocation (e.g., List<Integer>) all occurrences

of the formal type parameters are replaced by the actual
type argument (e.g., Integer).

24

Formal type parameters

GENERICS

Generic classes

class name <T1, T2, …, Tn> {…}

▸ A type variable can be any non-primitive type (class, interface, array)

▸ E: element (common in data structures), T: type, K: key, V: value, N: number, etc.

/**  
* Generic version of the Box class.  
* https://docs.oracle.com/javase/tutorial/java/generics/types.html 
* @param <T> the type of the value being boxed  
*/

public class Box<T> {  
 private T t;  
 
 public void set(T t) { this.t = t; }  
 public T get() { return t; }  
}

‣ Invocation: Box<Integer> integerBox = new Box<Integer>();

25

https://docs.oracle.com/javase/tutorial/java/generics/types.html

GENERICS

Multiple Type Parameters Example
public interface Pair<K, V> {

 public K getKey();

 public V getValue();

}

public class OrderedPair<K, V> implements Pair<K, V> {

 private K key;

 private V value;

 public OrderedPair(K key, V value) {

 this.key = key;

 this.value = value;

 }

}

Pair<String, Integer> p1 = new OrderedPair<String, Integer>("Even", 8);

OrderedPair<String, Box<Integer>> p = new OrderedPair<String, Box<Integer>>("primes", new
Box<Integer>(...));

26

GENERICS

Generic methods

modifier (static) <T1, T2, …, Tn> return-type name(list of type parameters){…}}

▸ The type parameter’s scope is limited to the method which is

declared.

▸ Static, non-static generic methods, generic class constructors are
allowed.

▸ Type inference: allows you to invoke a generic method as an
ordinary method, without specifying a type between angle
brackets.

▸ E.g., className/objectName.genericMethod(arguments);

27

GENERICS

Example

▸ Generic method that swaps the elements of an array at
two specified indices.

public static <T> void swap(T[] a, int i, int j) {  
 T temp = a[i];  
 a[i] = a[j];  
 a[j] = temp;  
}

28

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Oracle’s guides:

▸ Interfaces and Inheritance: https://docs.oracle.com/javase/tutorial/java/IandI/index.html

▸ Generics: https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/intro.html

▸ Recommended Textbook:

▸ Pages 100-104, 122

▸ Recommended Textbook Website:

▸ Generics: https://algs4.cs.princeton.edu/13stacks/

29

Practice Problems:
▸ If you want more practice with hiding vs overriding:

http://javabypatel.blogspot.com/2016/04/java-interview-questions.html

Code
▸ Lecture 3 code

https://docs.oracle.com/javase/tutorial/java/IandI/index.html
https://docs.oracle.com/javase/tutorial/java/generics/index.html
https://docs.oracle.com/javase/tutorial/extra/generics/intro.html
https://algs4.cs.princeton.edu/13stacks/
http://javabypatel.blogspot.com/2016/04/java-interview-questions.html
https://github.com/pomonacs622023fa/code/tree/main/Lecture3

