CSO62 DATA STRUCTURES AND ADVANCED PROGRAMMING

23: Shortest Paths

Alexandra Papoutsaki she/her/hers

Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra's Algorithm

Edge-weighted digraph

- Edge-weighted digraph: a digraph where we associate weights or costs with each edge.

```
edge-weighted digraph
    4->5 0.35
    5->4 0.35
    4->7 0.37
    5->7 0.28
    7->5 0.28
    5->1 0.32
    0->4 0.38
    0->2 0.26
    7->3 0.39
    1->3 0.29
    2->7 0.34
    6->2 0.40
    3->6 0.52
    6->0 0.58
    6->4 0.93
```


Shortest Paths

- Shortest path from vertex S to vertex t : a directed path from s to t with the property that no other such path has a lower weight (total weight sum of edges it consists of).

An edge-weighted digraph and a shortest path

Shortest Path variants

- Single source: from one vertex s to every other vertex.
- Single sink: from every vertex to one vertex t.
- Source-sink: from one vertex s to another vertex t.
- All pairs: from every vertex to every other vertex.
- What version is there in your navigation app?

Shortest Paths Assumptions

- Not all vertices need to be reachable.
- We will assume so in this lecture.
, Weights are non-negative.
, There are algorithms that can handle negative weights.
- Shortest paths are not necessarily unique but they are simple.

Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra's Algorithm

Weighted directed edge API

- public class DirectedEdge
- DirectedEdge(int v, int w, double weight)
- Constructs a weighted edge from v to $w(v->w)$ with the provided weight.
- int from()
- Returns vertex source of this edge.
- int to()
- Returns vertex destination of this edge.
- double weight()
- Returns weight of this edge.
- String toString()
- Returns the string representation of this edge.

Weighted directed edge in Java

```
public class DirectedEdge {
    private final int v;
    private final int w;
    private final double weight;
    public DirectedEdge(int v, int w, double weight) {
            this.v = v;
            this.w = w;
            this.weight = weight;
    }
    public int from() {
        return v;
    }
    public int to() {
        return w;
    }
    public double weight() {
        return weight;
    }
```


Edge-weighted digraph API

p public class EdgeWeightedDigraph

- EdgeWeightedDigraph(int v)
- Constructs an edge-weighted digraph with v vertices.
- void addEdge(DirectedEdge e)
- Add weighted directed edge e.
- Iterable<DirectedEdge> adj(int v)
- Returns edges adjacent from v .
- int V()
- Returns number of vertices.
- int E()
- Returns number of edges.
- Iterable<DirectedEdge> edges()
- Returns all edges.

Edge-weighted digraph adjacency list representation

tinyEWD.txt		
15		
4	5	0.35
5	4	0.35
4	7	0.37
5	7	0.28
7	5	0.28
5	1	0.32
0	4	0.38
0	2	0.26
7	3	0.39
1	3	0.29
2	7	0.34
6	2	0.40
3	6	0.52
6	0	0.58
6	4	0.93

Edge-weighted digraph representation

Edge-weighted digraph in Java

```
public class EdgeWeightedDigraph {
    private final int V; // number of vertices in this digraph
    private int E; // number of edges in this digraph
    private Bag<DirectedEdge>[] adj; // adj[v] = adjacency list for vertex v
    public EdgeWeightedDigraph(int V) {
        this.V = V;
        this.E = 0;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
            for (int v = 0; v < V; v++)
                adj[v] = new Bag<DirectedEdge>();
    }
    public void addEdge(DirectedEdge e) {
        int v = e.from();
        int w = e.to();
        adj[v].add(e);
        E++;
    }
    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
```


Single-source shortest path API

- Goal: find shortest path from S to every other vertex in the digraph.
- public class SP
- SP(EdgeWeightedDigraph G, int s)
- Shortest paths from s in digraph G .
- double distTo(int v)
- Length of shortest path from S to V .
- Iterable<DirectedEdge> pathTo(int v)
- Returns edges along the shortest path from s to V .
- boolean hasPathTo(int v)
- Returns whether there is a path from s to V .

Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra's Algorithm

Data structures for single-source shortest paths

- Goal: find shortest path from S to every other vertex in the digraph.
- Shortest-paths tree (SPT): a subgraph containing s and all the vertices reachable from s that forms a directed tree rooted at s such that every tree path in the SPT is a shortest path in the digraph.
- Representation of shortest paths with two vertex-indexed arrays.
- Edges on the shortest-paths tree: edgeTo[v] is the last edge on a shortest path from s to V .
- Distance to the source: distTo[v] is the length of the shortest path from s to v.

Edge relaxation

- Relax edge $\mathrm{e}=\mathrm{v}->\mathrm{W}$
- distTo[v] is the length of the shortest known path from s to V.
- distTo[w] is the length of the shortest known path from s to W.
, edgeTo[w] is the last edge on shortest known path from s to w.
- If $\mathrm{e}=\mathrm{v}->\mathrm{w}$ yields shorter path to w , update distTo[w] and edgeTo[w].

Edge relaxation

Edge relaxation implementation

```
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```

Framework for shortest-paths algorithm

- Generic algorithm to compute a SPT from s
- distTo[V$]=\infty$ for each vertex V .
- edgeTo[v]=null for each vertex v .
- distTo[s]=0.
- Repeat until done:
- Relax any edge.
- distTo[v] is the length of a simple path from s to v.
, distTo[v] does not increase.

Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra's Algorithm

Algorithms

Dijkstra's Algorithm Demo

Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

$\longrightarrow 0$| v | distTo[] | edgeTo[] |
| :---: | :---: | :---: |
| 0 | 0.0 | - |

choose source vertex 0

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 0

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 0

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[
0	0.0	-
1	5.0	$0 \rightarrow 1$
2		
3		
4	9.0	$0 \rightarrow 4$
5		
6		$0 \rightarrow 7$

choose vertex 1

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2		
3		
4	9.0	$0 \rightarrow 4$
5		
6		
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2		
3		
4	9.0	$0 \rightarrow 4$
5		
6		
7	8.0	$0 \rightarrow 7$

relax all edges adjacent from 1

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[
0	0.0	-
$\rightarrow 1$	5.0	$0 \rightarrow 1$
2	17.0	$1 \rightarrow 2$
3	20.0	$1 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5		
6		
7	8.0	$0 \rightarrow 7$

relax all edges adjacent from 1

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	17.0	$1 \rightarrow 2$
3	20.0	$1 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5		
6		
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

choose vertex 7

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 7

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 7

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	15.0	$7 \rightarrow 2$
3	20.0	$1 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	14.0	$7 \rightarrow 5$
6		
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

select vertex 4

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 4

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 4

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	15.0	$7 \rightarrow 2$
3	20.0	$1 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	29.0	$4 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

select vertex 5

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 5

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 5

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	14.0	$5 \rightarrow 2$
3	20.0	$1 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	26.0	$5 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

select vertex 2

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 2

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 2

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	14.0	$5 \rightarrow 2$
3	17.0	$2 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	25.0	$2 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

select vertex 3

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 3

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 3

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	14.0	$5 \rightarrow 2$
3	17.0	$2 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	25.0	$2 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

select vertex 6

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 6

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	14.0	$5 \rightarrow 2$
3	17.0	$2 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	25.0	$2 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

v	distTo[]	edgeTo[]
0	0.0	-
1	5.0	$0 \rightarrow 1$
2	14.0	$5 \rightarrow 2$
3	17.0	$2 \rightarrow 3$
4	9.0	$0 \rightarrow 4$
5	13.0	$4 \rightarrow 5$
6	25.0	$2 \rightarrow 6$
7	8.0	$0 \rightarrow 7$

shortest-paths tree from vertex s

Indexed min-priority queue (Section 2.4 in textbook)

- Associate an index between 0 and $\mathrm{n}-1$ with each key in a priority queue.
- Insert a key associated with a given index.
- Delete a minimum key and return associated index.
- Decrease the key associated with a given index.
p public class IndexMinPQ<Key extends Comparable<Key>>
- IndexMinPQ(int n)
- Create indexed PQ with indices $0,1, \ldots \mathrm{n}-1$
- void insert(int i, Key key)
- Associate key with index i.
- int delMin()
- Remove a minimal key and return its associated index.
- void decreaseKey(int i, Key key)
- Decrease the key with index ito the specified valye.

```
public class DijkstraSP {
    private double[] distTo; // distTo[v] = distance of shortest s->V path
    private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->V path
    private IndexMinPQ<Double> pq; // priority queue of vertices
    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        distTo = new double[G.V()];
        edgeTo = new DirectedEdge[G.V()];
        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;
        // relax vertices in order of distance from s
        pq = new IndexMinPQ<Double>(G.V());
        pq.insert(s, distTo[s]);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
    // relax edge e and update pq if changed
    private void relax(DirectedEdge e) {
        int v = e.from(), w = e.to();
        if (distTo[w] > distTo[v] + e.weight()) {
            distTo[w] = distTo[v] + e.weight();
            edgeTo[w] = e;
            if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
            else pq.insert(w, distTo[w]);
        }
    }
```

Running time depends on PQ implementation

- Many variations. Assuming binary heap, running time is proportional to $|E| \log |V|$ and $|V|$ extra space.
- Cost of insert, delete-min, decrease-key are all $\log |V|$.
- More complicated version with a Fibonacci heap (CS140...) takes $O(|E|+|V| \log |V|)$ time but in practice it's not worth implementing.

Practice Time

- Run Dijkstra's algorithm on the following graph with 0 being the starting vertex.

Answer

v	distTo[]	edgeTo[]
0	0	-
1	6	$3->1$
2	2	$0->2$
3	4	$2->3$
4	5	$3->4$
5	8	$6->5$
6	6	$4->6$
7	11	$5->7$

Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra's Algorithm

Readings:

- Recommended Textbook: Chapter 4.4 (Pages 638-676)
, Website:
- https://algs4.cs.princeton.edu/44sp/

Practice Problems:

Run Dijkstra's algorithm on the graph on the right with A being the starting vertex.

