CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

23: Shortest Paths

Alexandra Papoutsaki
she/her/hers
Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra’s Algorithm

Some slides adopted from Algorithms 4th Edition or COS226
Edge-weighted digraph

- **Edge-weighted digraph**: a digraph where we associate weights or costs with each edge.
Shortest Paths

- **Shortest path from vertex \(s \) to vertex \(t \):** a directed path from \(s \) to \(t \) with the property that no other such path has a lower weight (total weight sum of edges it consists of).
Shortest Path variants

- **Single source**: from one vertex s to every other vertex.
- **Single sink**: from every vertex to one vertex t.
- **Source-sink**: from one vertex s to another vertex t.
- **All pairs**: from every vertex to every other vertex.

- What version is there in your navigation app?
Shortest Paths Assumptions

- Not all vertices need to be reachable.
 - We will assume so in this lecture.
- Weights are non-negative.
 - There are algorithms that can handle negative weights.
- Shortest paths are not necessarily unique but they are simple.
Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra’s Algorithm
Weighted directed edge API

- **public class** DirectedEdge
 - DirectedEdge(int v, int w, double weight)
 - Constructs a weighted edge from v to w (v->w) with the provided weight.
 - int from()
 - Returns vertex source of this edge.
 - int to()
 - Returns vertex destination of this edge.
 - double weight()
 - Returns weight of this edge.
 - String toString()
 - Returns the string representation of this edge.
public class DirectedEdge {
 private final int v;
 private final int w;
 private final double weight;

 public DirectedEdge(int v, int w, double weight) {
 this.v = v;
 this.w = w;
 this.weight = weight;
 }

 public int from() {
 return v;
 }

 public int to() {
 return w;
 }

 public double weight() {
 return weight;
 }
}
Edge-weighted digraph API

- **public class EdgeWeightedDigraph**
 - EdgeWeightedDigraph(int v)
 - Constructs an edge-weighted digraph with v vertices.
 - void addEdge(DirectedEdge e)
 - Add weighted directed edge e.
 - Iterable<DirectedEdge> adj(int v)
 - Returns edges adjacent from v.
 - int V()
 - Returns number of vertices.
 - int E()
 - Returns number of edges.
 - Iterable<DirectedEdge> edges()
 - Returns all edges.
Edge-weighted digraph adjacency list representation
Edge-weighted digraph in Java

```java
public class EdgeWeightedDigraph {
    private final int V; // number of vertices in this digraph
    private int E; // number of edges in this digraph
    private Bag<DirectedEdge>[] adj; // adj[v] = adjacency list for vertex v

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        this.E = 0;
        adj = (Bag<DirectedEdge>[][]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from();
        int w = e.to();
        adj[v].add(e);
        E++;
    }

    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```
Single-source shortest path API

- **Goal**: find shortest path from s to every other vertex in the digraph.

- **public class** `SP`
 - `SP(EdgeWeightedDigraph G, int s)`
 - Shortest paths from s in digraph G.
 - `double distTo(int v)`
 - Length of shortest path from s to v.
 - `Iterable<DirectedEdge> pathTo(int v)`
 - Returns edges along the shortest path from s to v.
 - `boolean hasPathTo(int v)`
 - Returns whether there is a path from s to v.
Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra’s Algorithm
Data structures for single-source shortest paths

- **Goal**: find shortest path from s to every other vertex in the digraph.

- **Shortest-paths tree (SPT)**: a subgraph containing s and all the vertices reachable from s that forms a directed tree rooted at s such that every tree path in the SPT is a shortest path in the digraph.

- Representation of shortest paths with two vertex-indexed arrays.
 - **Edges on the shortest-paths tree**: $\text{edgeTo}[v]$ is the last edge on a shortest path from s to v.
 - **Distance to the source**: $\text{distTo}[v]$ is the length of the shortest path from s to v.
```java
public Iterable<DirectedEdge> pathTo(int v) {
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()]) {
        path.push(e);
    }
    return path;
}
```
PROPERTIES

Edge relaxation

- Relax edge $e = v \rightarrow w$
 - $\text{distTo}[v]$ is the length of the shortest \textit{known} path from S to v.
 - $\text{distTo}[w]$ is the length of the shortest \textit{known} path from S to w.
 - $\text{edgeTo}[w]$ is the last edge on shortest \textit{known} path from S to w.
 - If $e = v \rightarrow w$ yields shorter path to w, update $\text{distTo}[w]$ and $\text{edgeTo}[w]$.
Edge relaxation
Edge relaxation implementation

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```
Framework for shortest-paths algorithm

- Generic algorithm to compute a SPT from s
 - $\text{distTo}[v] = \infty$ for each vertex v.
 - $\text{edgeTo}[v] = \text{null}$ for each vertex v.
 - $\text{distTo}[s] = 0$.
- Repeat until done:
 - Relax any edge.
- $\text{distTo}[v]$ is the length of a simple path from s to v.
- $\text{distTo}[v]$ does not increase.
Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra’s Algorithm
DIJKSTRA'S ALGORITHM DEMO
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest \texttt{distTo[]} value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra’s algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest \text{distTo}[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

choose source vertex 0
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 0
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo[]} \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
relax all edges adjacent from 0
```

```

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

```
0→1  5.0
0→4  9.0
0→7  8.0
1→2  12.0
1→3  15.0
1→7  4.0
2→3  3.0
2→6  11.0
3→6  9.0
4→5  4.0
4→6  20.0
4→7  5.0
5→2  1.0
5→6  13.0
7→5  6.0
7→2  7.0
```
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
   0   5.0
   0   9.0
   0   8.0
   1   12.0
   1   15.0
   1   4.0
   2   3.0
   2   11.0
   3   9.0
   4   4.0
   4   20.0
   4   5.0
   5   1.0
   5   13.0
   7   6.0
   7   7.0
```

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

choose vertex 1
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→7</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 1
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0 ✔</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 1
• Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
• Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

choose vertex 7
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>17.0</td>
<td>1→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 7
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>14.0</td>
<td>7→5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 7
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>7→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>14.0</td>
<td>7→5</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

select vertex 4
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>15.0</td>
<td>0→1</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>0→1</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→1</td>
</tr>
<tr>
<td>5</td>
<td>14.0</td>
<td>0→1</td>
</tr>
<tr>
<td>6</td>
<td>7.0</td>
<td>0→1</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→1</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 4
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 4
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[\cdot]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

Select vertex 5
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 5
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>1→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>26.0</td>
<td>5→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

relax all edges adjacent from 5
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \(\text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.

select vertex 2
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```plaintext
v  distTo[]  edgeTo[]
0   0.0       -
1   5.0       0→1
2   14.0      5→2
3   20.0      1→3
4   9.0       0→4
5   13.0      4→5
6   26.0      5→6
7   8.0       0→7
```

relax all edges adjacent from 2
• Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
• Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra's algorithm demo

relax all edges adjacent from 2
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

![Dijkstra's algorithm demo](image)

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

select vertex 3
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest \texttt{distTo[]} value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

relax all edges adjacent from 3
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from \(s \) (non-tree vertex with the lowest \text{distTo}[] \) value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```

select vertex 6
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

relax all edges adjacent from 6
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest $\text{distTo}[\cdot]$ value).
- Add vertex to tree and relax all edges adjacent from that vertex.

```
<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
```
Indexed min-priority queue (Section 2.4 in textbook)

- Associate an index between 0 and n-1 with each key in a priority queue.
 - Insert a key associated with a given index.
 - Delete a minimum key and return associated index.
 - Decrease the key associated with a given index.

```java
public class IndexMinPQ<Key extends Comparable<Key>>

  IndexMinPQ(int n)
  // Create indexed PQ with indices 0,1,...n-1

  void insert(int i, Key key)
  // Associate key with index i.

  int delMin()
  // Remove a minimal key and return its associated index.

  void decreaseKey(int i, Key key)
  // Decrease the key with index i to the specified value.
```
public class DijkstraSP {
 private double[] distTo; // distTo[v] = distance of shortest s->v path
 private DirectedEdge[] edgeTo; // edgeTo[v] = last edge on shortest s->v path
 private IndexMinPQ<Double> pq; // priority queue of vertices

 public DijkstraSP(EdgeWeightedDigraph G, int s) {
 distTo = new double[G.V()];
 edgeTo = new DirectedEdge[G.V()];

 for (int v = 0; v < G.V(); v++)
 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 // relax vertices in order of distance from s
 pq = new IndexMinPQ<Double>(G.V());
 pq.insert(s, distTo[s]);
 while (!pq.isEmpty()) {
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
 }
 }

 // relax edge e and update pq if changed
 private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert(w, distTo[w]);
 }
 }
}
Running time depends on PQ implementation

- Many variations. Assuming binary heap, running time is proportional to $|E|\log|V|$ and $|V|$ extra space.
- Cost of insert, delete-min, decrease-key are all $\log|V|$.
- More complicated version with a Fibonacci heap (CS140...) takes $O(|E| + |V|\log|V|)$ time but in practice it’s not worth implementing.
Practice Time

- Run Dijkstra’s algorithm on the following graph with 0 being the starting vertex.
Answer

DIJKSTRA’S ALGORITHM

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>3->1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0->2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2->3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3->4</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>6->5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4->6</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>5->7</td>
</tr>
</tbody>
</table>
Lecture 23: Shortest Paths

- Introduction to Shortest Paths
- API
- Properties
- Dijkstra’s Algorithm
Readings:

- Recommended Textbook: Chapter 4.4 (Pages 638-676)
- Website:
 - https://algs4.cs.princeton.edu/44sp/

Practice Problems:

Run Dijkstra’s algorithm on the graph on the right with A being the starting vertex.