Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Undirected Graphs

- **Graph**: A set of *vertices* connected pairwise by *edges*.

https://www.wikiwand.com/simple/Graph_(mathematics)
Why study graphs?

- Thousands of practical applications.
- Hundreds of graph algorithms known.
- Interesting and broadly useful abstraction.
- Challenging branch of theoretical computer science.
Protein-protein interaction graph

The Internet

https://www.opte.org/the-internet
Social media

Graph terminology

- **Path**: Sequence of vertices connected by edges
- **Cycle**: Path whose first and last vertices are the same
- Two vertices are **connected** if there is a path between them
Examples of graph-processing problems

- Is there a path between vertex s and t?
- What is the shortest path between s and t?
- Is there a cycle in the graph?
- **Euler Tour**: Is there a cycle that uses each edge exactly once?
- **Hamilton Tour**: Is there a cycle that uses each vertex exactly once?
- Is there a way to connect all vertices?
- What is the shortest way to connect all vertices?
- Is there a vertex whose removal disconnects the graph?
Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Graph representation

- **Vertex representation**: Here, integers between 0 and V-1.
 - We will use a symbol table (dictionary) to map between names of vertices and integers (indices).
Basic Graph API

- **public class** Graph
 - **Graph**(int V): create an empty graph with V vertices.
 - **void** addEdge(int v, int w): add an edge v-w.
 - **Iterable<Integer>** adj(int v): return vertices adjacent to v.
 - **int** $V()$: number of vertices.
 - **int** $E()$: number of edges.
Example of how to use the Graph API to process the graph

```java
public static int degree(Graph g, int v) {
    int count = 0;
    for (int w : g.adj(v))
        count++;
    return count;
}
```
Graph density

- In a simple graph (no parallel edges or loops), if $|V| = n$, then:
 - minimum number of edges is 0 and
 - maximum number of edges is $n(n - 1)/2$.
- Dense graph -> edges closer to maximum.
- Sparse graph -> edges closer to minimum.
Graph representation: adjacency matrix

- Maintain a $|V|$-by-$|V|$ boolean array; for each edge $v-w$:
 - $\text{adj}[v][w] = \text{adj}[w][v] = \text{true}$;
- Good for dense graphs (edges close to $|V|^2$).
- Constant time for lookup of an edge.
- Constant time for adding an edge.
- $|V|$ time for iterating over vertices adjacent to v.
- Symmetric, therefore wastes space in undirected graphs ($|V|^2$).
- Not widely used in practice.
Graph representation: adjacency list

- Maintain vertex-indexed array of lists.
- Good for sparse graphs (edges proportional to $|V|$) which are much more common in the real world.
- Algorithms based on iterating over vertices adjacent to v.
- Space efficient ($|E| + |V|$).
- Constant time for adding an edge.
- Lookup of an edge or iterating over vertices adjacent to v is $\text{degree}(v)$.
Adjacency-list graph representation in Java

```java
public class Graph {
    private final int V;
    private int E;
    private Bag<Integer>[] adj;

    // Initializes an empty graph with V vertices and 0 edges.
    public Graph(int V) {
        this.V = V;
        this.E = 0;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new Bag<Integer>();
        }
    }

    // Adds the undirected edge v-w to this graph. Parallel edges and self-loops allowed
    public void addEdge(int v, int w) {
        E++;
        adj[v].add(w);
        adj[w].add(v);
    }

    // Returns the vertices adjacent to vertex v.
    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```

A bag is a collection where removing items is not supported—its purpose is to provide clients with the ability to collect items and then to iterate through the collected items.
Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
DEPTH-FIRST SEARCH

Mazes as graphs

- Vertex = intersection; edge = passage

How to survive a maze: a lesson from a Greek myth

- Theseus escaped from the labyrinth after killing the Minotaur with the following strategy instructed by Ariadne:
 - Unroll a ball of string behind you.
 - Mark each newly discovered intersection and passage.
 - Retrace steps when no unmarked options.
- Also known as the Trémaux algorithm.
Depth-first search

- **Goal:** Systematically traverse a graph.

- **DFS** (to visit a vertex v)
 - Mark vertex v.
 - Recursively visit all unmarked vertices w adjacent to v.

- **Typical applications:**
 - Find all vertices connected to a given vertex.
 - Find a path between two vertices.
4.1 Depth-First Search Demo
Recursive depth-first search

- **Goal:** Find all vertices connected to S (and a corresponding path).
- **Idea:** Mimic maze exploration.
- **Algorithm:**
 - Use recursion (ball of string).
 - Mark each visited vertex (and keep track of edge taken to visit it).
 - Return (retrace steps) when no unvisited options.
- When started at vertex s, DFS marks all vertices connected to S (and no other).
Recursive implementation of depth-first search in Java

```java
public class DepthFirstSearch {
    private boolean[] marked; // marked[v] = is there an s-v path?
    private int[] edgeTo; // edgeTo[v] = previous vertex on path from s to v

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];
        dfs(G, s);
    }

    // depth first search from v
    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                edgeTo[w] = v;
                dfs(G, w);
            }
        }
    }
}
```
PRACTICE TIME

- Run recursive DFS on the following graph starting at vertex 0 and return the vertices in the order of being marked. Assume that the adj method returns back the adjacent vertices in increasing numerical order.
Vertices marked as visited: 0, 2, 3, 4, 1, 5
Iterative depth-first search

- We can also implement depth-first search with an explicit stack instead of recursion. Such an implementation would explore adjacent vertices in the reverse order of the standard recursive DFS.
Alternative iterative implementation with a stack

```java
public class IterativeDFS {
    private boolean[] marked; // marked[v] = is there an s→v path?
    private int[] edgeTo;     // edgeTo[v] = previous vertex on path from s to v

    public IterativeDFS(Graph G, int s) {
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];
        dfs(G, s);
    }

    // iterative dfs that uses a stack
    private void dfs(Graph G, int v) {
        Stack stack = new Stack();
        stack.push(v);
        while (!stack.isEmpty()) {
            int vertex = stack.pop();
            if (!marked[vertex]) {
                marked[vertex] = true;
                for (int w : G.adj(vertex)) {
                    if (!marked[w]) {
                        edgeTo[w] = vertex;
                        stack.push(w);
                    }
                }
            }
        }
    }
}
```
Run the iterative DFS that uses a stack on the following graph starting at vertex 0 and return the vertices in the order of being marked. Assume that the adj method returns back the adjacent vertices in increasing numerical order.
Vertices marked as visited: 0, 5, 4, 2, 3, 1

ANSWER

<table>
<thead>
<tr>
<th>V</th>
<th>marked</th>
<th>edgeTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
</tr>
</tbody>
</table>
DEPTH-FIRST SEARCH

ANSWER

- Vertices marked as visited in recursive DFS: 0, 2, 3, 4, 1, 5
- Vertices marked as visited in iterative DFS: 0, 5, 4, 2, 3, 1

Recursive DFS

Iterative DFS
Depth-first search Analysis

- DFS marks all vertices connected to s in time proportional to $|V| + |E|$ in the worst case.

- Initializing arrays marked and edgeTo takes time proportional to $|V|$.

- Each adjacency-list entry is examined exactly once and there are $2|E|$ such entries (two for each edge).

- Once we run DFS, we can check if vertex v is connected to s in constant time. We can also find the v-s path (if it exists) in time proportional to its length.
Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
BREADTH-FIRST SEARCH

Breadth-first search

- **BFS** (from source vertex \(s \))
 - Put \(s \) on a queue and mark it as visited.
 - Repeat until the queue is empty:
 - Dequeue vertex \(v \).
 - Enqueue each of \(v \)'s unmarked neighbors and mark them.

- Basic idea: BFS traverses vertices in order of distance from \(s \).
4.1 Breadth-First Search Demo
BREADTH-FIRST SEARCH

Breadth-first search in Java

```java
public class BreadthFirstSearch {
    private boolean[] marked; // marked[v] = is there an s-v path
    private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
    private int[] distTo; // distTo[v] = number of edges shortest s-v path

    public BreadthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        bfs(G, s);
    }

    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        distTo[s] = 0;
        marked[s] = true;
        q.enqueue(s);

        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                    marked[w] = true;
                    q.enqueue(w);
                }
            }
        }
    }
}
```
Run the BFS on the following graph starting at vertex 0 and return the vertices in the order of being marked. Assume that the adj method returns back the adjacent vertices in increasing numerical order.
DEPTH-FIRST SEARCH

ANSWER

- Vertices marked as visited: 0, 2, 4, 5, 3, 1

<table>
<thead>
<tr>
<th>V</th>
<th>marked</th>
<th>edgeTo</th>
<th>distTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>T</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>T</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>T</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>T</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>T</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Summary

- **DFS**: Put unvisited vertices on a stack.
- **BFS**: Put unvisited vertices on a queue.
- **Shortest path problem**: Find path from s to t that uses the fewest number of edges.
 - E.g., calculate the fewest numbers of hops in a communication network.
 - E.g., calculate the Kevin Bacon number or Erdős number.
- BFS computes shortest paths from s to all vertices in a graph in time proportional to $|E| + |V|$.
 - The queue always consists of zero or more vertices of distance k from s, followed by zero or more vertices of $k+1$.
Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Directed Graph Terminology

- **Directed Graph (digraph)**: a set of vertices \(V \) connected pairwise by a set of directed edges \(E \).

 E.g., \(V = \{0,1,2,3,4,5,6,7,8,9,10,11,12\} \),

 \(E = \{\{0,1\}, \{0,5\}, \{2,0\}, \{2,3\}, \{3,2\}, \{3,5\}, \{4,2\}, \{4,3\}, \{5,4\}, \{6,0\}, \{6,4\}, \{6,9\}, \{7,6\}, \{7,8\}, \{8,7\}, \{8,9\}, \{9,10\}, \{9,11\}, \{10,12\}, \{11,4\}, \{11,12\}, \{12,9\}\} \).

- **Directed path**: a sequence of vertices in which there is a directed edge pointing from each vertex in the sequence to its successor in the sequence, with no repeated edges.

 - A **simple directed path** is a directed path with no repeated vertices.

- **Directed cycle**: Directed path with at least one edge whose first and last vertices are the same.

 - A **simple directed cycle** is a directed cycle with no repeated vertices (other than the first and last).

- The **length** of a cycle or a path is its number of edges.
Directed Graph Terminology

- **Self-loop**: an edge that connects a vertex to itself.
- Two edges are **parallel** if they connect the same pair of vertices.
- The **outdegree** of a vertex is the number of edges pointing from it.
- The **indegree** of a vertex is the number of edges pointing to it.
- A vertex \(w \) is **reachable** from a vertex \(v \) if there is a directed path from \(v \) to \(w \).
- Two vertices \(v \) and \(w \) are **strongly connected** if they are mutually reachable.
Directed Graph Terminology

- A digraph is **strongly connected** if there is a directed path from every vertex to every other vertex.

- A digraph that is not strongly connected consists of a set of strongly connected components, which are maximal strongly connected subgraphs.

- A **directed acyclic graph (DAG)** is a digraph with no directed cycles.
Anatomy of a digraph

Anatomy of a digraph

A digraph and its strong components
Digraph Applications

<table>
<thead>
<tr>
<th>Digraph</th>
<th>Vertex</th>
<th>Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web</td>
<td>Web page</td>
<td>Link</td>
</tr>
<tr>
<td>Cell phone</td>
<td>Person</td>
<td>Placed call</td>
</tr>
<tr>
<td>Financial</td>
<td>Bank</td>
<td>Transaction</td>
</tr>
<tr>
<td>Transportation</td>
<td>Intersection</td>
<td>One-way street</td>
</tr>
<tr>
<td>Game</td>
<td>Board</td>
<td>Legal move</td>
</tr>
<tr>
<td>Citation</td>
<td>Article</td>
<td>Citation</td>
</tr>
<tr>
<td>Infectious Diseases</td>
<td>Person</td>
<td>Infection</td>
</tr>
<tr>
<td>Food web</td>
<td>Species</td>
<td>Predator-prey relationship</td>
</tr>
</tbody>
</table>
Popular digraph problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>s->t path</td>
<td>Is there a path from s to t?</td>
</tr>
<tr>
<td>Shortest s->t path</td>
<td>What is the shortest path from s to t?</td>
</tr>
<tr>
<td>Directed cycle</td>
<td>Is there a directed cycle in the digraph?</td>
</tr>
<tr>
<td>Topological sort</td>
<td>Can vertices be sorted so all edges point from earlier to later vertices?</td>
</tr>
<tr>
<td>Strong connectivity</td>
<td>Is there a directed path between every pair of vertices?</td>
</tr>
</tbody>
</table>
Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Basic Graph API

- **public class** Digraph
 - **Digraph(int V)**: create an empty digraph with V vertices.
 - **void addEdge(int v, int w)**: add an edge v->w.
 - **Iterable<Integer> adj(int v)**: return vertices adjacent from v.
 - **int V()**: number of vertices.
 - **int E()**: number of edges.
 - **Digraph reverse()**: reverse edges of digraph.
DIRECTED GRAPHS

Digraph representation: adjacency list

- Maintain vertex-indexed array of lists.
- Good for sparse graphs (edges proportional to $|V|$) which are much more common in the real world.
- Algorithms based on iterating over vertices adjacent from v.
- Space efficient ($|E| + |V|$).
- Constant time for adding a directed edge.
- Lookup of a directed edge or iterating over vertices adjacent from v is $\text{outdegree}(v)$.
Adjacency-list digraph representation in Java

```java
public class Digraph {

    private final int V;
    private int E;
    private Bag<Integer>[] adj;

    // Initializes an empty digraph with V vertices and 0 edges.
    public Digraph(int V) {
        this.V = V;
        this.E = 0;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new Bag<Integer>();
        }
    }

    // Adds the directed edge v->w to this digraph.
    public void addEdge(int v, int w) {
        E++;
        adj[v].add(w);
    }

    // Returns the vertices adjacent from vertex v.
    public Iterable<Integer> adj(int v) {
        return adj[v];
    }
}
```
Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Reachability

- Find all vertices reachable from s along a directed path.

Is w reachable from v in this digraph?

https://apprize.info/science/algorithms_2/2.html
Depth-first search in digraphs

- Same method as for undirected graphs.
 - Every undirected graph is a digraph with edges in both directions.
 - Maximum number of edges in a simple digraph is $n(n - 1)$.
- **DFS** (to visit a vertex v)
 - Mark vertex v.
 - Recursively visit all unmarked vertices w adjacent from v.
- Typical applications:
 - Find a directed path from source vertex S to a given target vertex V.
 - Topological sort.
 - Directed cycle detection.
4.2 Directed DFS Demo
public class DirectedDFS {
 private boolean[] marked; // marked[v] = is there an s->v path?

 public DirectedDFS(Digraph G, int s) {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 // directed depth first search from v
 private void dfs(Digraph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 dfs(G, w);
 }
 }
 }
}
Alternative iterative implementation with a stack

```java
public class DirectedDFS {
    private boolean[] marked; // marked[v] = is there an s->v path?

    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }

    // iterative dfs that uses a stack
    private void dfs(Digraph G, int v) {
        Stack stack = new Stack();
        s.push(v);
        while (!stack.isEmpty()) {
            int vertex = stack.pop();
            if (!marked[vertex]) {
                marked[vertex] = true;
                for (int w : G.adj(vertex)) {
                    if (!marked[w])
                        stack.push(w);  
                }
            }
        }
    }
}
```
Depth-first search Analysis

- DFS marks all vertices reachable from \(s \) in time proportional to \(| V | + | E |\) in the worst case.

- Initializing arrays marked takes time proportional to \(| V |\).

- Each adjacency-list entry is examined exactly once and there are \(E \) such edges.

- Once we run DFS, we can check if vertex \(v \) is reachable from \(s \) in constant time. We can also find the \(s \rightarrow v \) path (if it exists) in time proportional to its length.
Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Breadth-first search

- Same method as for undirected graphs.
 - Every undirected graph is a digraph with edges in both directions.
- **BFS** (from source vertex s)
 - Put s on queue and mark s as visited.
 - Repeat until the queue is empty:
 - Dequeue vertex v.
 - Enqueue all unmarked vertices adjacent from v, and mark them.
- **Typical applications:**
 - Find the shortest (in terms of number of edges) directed path between two vertices in time proportional to $|E| + |V|$.
4.2 Directed BFS Demo
Summary

- Single-source reachability in a digraph: DFS/BFS.
- Shortest path in a digraph: BFS.
Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search

- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Is a digraph strongly connected?

- A strongly connected digraph is a directed graph in which it is possible to reach any vertex starting from any other vertex by traversing edges.

- Pick a random starting vertex s.

- Run DFS/BFS starting at s.
 - If have not reached all vertices, return false.

- Reverse edges.

- Run DFS/BFS again on reversed graph.
 - If have not reached all vertices, return false.
 - Else return true.
Lecture 22: Graphs

- Undirected Graphs
 - Graph API
 - Depth-First Search
 - Breadth-First Search
- Directed Graphs
 - Digraph API
 - Depth-First Search
 - Breadth-First Search
 - Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226
Readings:

- Recommended Textbook: Chapter 4.1 (Pages 522-556), Chapter 4.2 (Pages 566-594)

- Website:
 - https://algs4.cs.princeton.edu/41graph/
 - https://algs4.cs.princeton.edu/42digraph/

Practice Problems:

- 4.1.1-4.1.6, 4.1.9, 4.1.11
- 4.2.1-4.27