£35062

DATA STRUCTURES AND ADVANCED PROGRAMMING
22: Graphs

" 4 \ Alexandra Papoutsaki
@ ' shelher/hers

TODAY'S LECTURE IN A NUTSHELL

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

UNDIRECTED GRAPHS

Undirected Graphs

» Graph: A set of vertices connected pairwise by edges.

Manse
Meuse
/ Leytonstone
Aechway
(Jrinstury
Pk sed
Zone 3 ‘
Arsensl
Hampstead 2 eyton
Neassan Park
Do Ll
Ha Road
Willesgen
Green Kentssh
¥ Town b
Kibwrn
Harkesden
Quesns
Wilesden Park
Jencion sed O iy

» Park

Zone 3 Zone 1

Zone 1

Zone 3

https://www.wikiwand.com/simple/Graph_(mathematics)

UNDIRECTED GRAPHS
Why study graphs?

» Thousands of practical applications.
» Hundreds of graph algorithms known.
» Interesting and broadly useful abstraction.

» Challenging branch of theoretical computer science.

UNDIRECTED GRAPHS

Protein-protein interaction graph

.:'.*‘" !5
N\ \BRAV\ T
«‘4‘}:{" "". A

!

N
R
TRX

p
<

...
= nw. - Ta .
W
%
. ;\A‘. “\'.'" .i"'
LR R RN AR

/

-~

W

DY "
XL a
A
O\

/]
q

L/

2
7 -
»)4 "/
Lrat ‘\l}’l

- “
4\

https://www.researchgate.net/figure/Network e of= A otemmorotein-interactions-Green-color-

represents-proteins fig4d 272297002

UNDIRECTED GRAPHS

The Internet

https://www.opte.org/the-internet

UNDIRECTED GRAPHS

Social media

//www.databentobox.com/2019/07/28/facebook-friend-graph/

https

UNDIRECTED GRAPHS 8

Graph terminology

» Path: Sequence of vertices connected by edges
» Cycle: Path whose first and last vertices are the same

» Two vertices are connected if there is a path between them

A
A
>">J-—‘.- -,-r.)
) COomneciea
=" components

Anatomy of a graph

UNDIRECTED GRAPHS

Examples of graph-processing problems

» Is there a path between vertex s and t?

» What is the shortest path between s and t?

» Is there a cycle in the graph?

» Euler Tour: Is there a cycle that uses each edge exactly once?

» Hamilton Tour: Is there a cycle that uses each vertex exactly once?
» Is there a way to connect all vertices?

» What is the shortest way to connect all vertices?

» Is there a vertex whose removal disconnects the graph?

TODAY'S LECTURE IN A NUTSHELL

10

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

UNDIRECTED GRAPHS
Graph representation

» Vertex representation: Here, integers between 0 and V-1.

» We will use a symbol table (dictionary) to map between
names of vertices and integers (indices).

05

‘3 0

01 000
9 12

b 4

5 4

02

11 12
9 10

06

7 8

9 11

5 3

11

UNDIRECTED GRAPHS

Basic Graph API

» public class Graph

» Graph(int V): create an empty graph with V vertices.
» void addkdge(int v, 1int w):add an edge v-w.

» Tterable<Integer> adj(int v):return vertices
adjacent to v.

» 1nt V(): number of vertices.

» 1nt EQ): number of edges.

12

UNDIRECTED GRAPHS
Example of how to use the Graph API to process the graph

» public static int degree(Graph g, int v){
1nt count = 0;
for(int w : g.adj(v))
count++;
return count;

13

UNDIRECTED GRAPHS

Graph density

» Inasimple graph (no parallel edges or loops), if | V| = n, then:
» minimum number of edges is 0 and
» maximum number of edgesisn(n — 1)/2.

» Dense graph -> edges closer to maximum.

» Sparse graph -> edges closer to minimum.

14

UNDIRECTED GRAPHS

Graph representation: adjacency matrix

» Maintaina |V|-by-| V| boolean array; A B c
for each edge v-w:
A 1 1
» adjlv][w] = adj[w][v] = true; 5 0 0
» Good for dense graphs (edges close to | V%) C 0 0
: D 1 0
» Constant time for lookup of an edge.

» Constant time for adding an edge.

» | V] time for iterating over vertices adjacent to v.

» Symmetric, therefore wastes space in undirected
graphs (| V|*).

» Not widely used in practice.

UNDIRECTED GRAPHS

Graph representation: adjacency list

» Maintain vertex-indexed array of lists.

» Good for sparse graphs (edges proportional to

| V|) which are much more common in the real
world.

» Algorithms based on iterating over vertices
adjacent to v.

» Space efficient(|E|+|V]).
» Constant time for adding an edge.

» Lookup of an edge or iterating over vertices
adjacentto vis degree(v).

16

6= 2f~ 1+~ 5
) Bag
5 }—| 4 ‘
5 6 |—3
3~ 4|—|0]
0|4
8
S \ representations
—— _~ of the same edge
71"
11—{10 —»[12.’
B
9 {12

UNDIRECTED GRAPHS 17

Adjacency-list graph representation in Java

public class Graph {

private final int V;
private int E;
private Bag<Integer>[] adj;

//Initializes an empty graph with V vertices and 0 edges.
public Graph(int V) {

this.V = V;

this.E = 0;

adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; vt++) {
adj[v] = new Bag<Integer>();

}

}

//Adds the undirected edge v-w to this graph. Parallel edges and self-loops allowed
public void addEdge(int v, int w) {

E++;

adj[v].add(w);

adj[w].add(v);

//Returns the vertices adjacent to vertex v.
public Iterable<Integer> adj(int v) {
return adj[v];

}

A bag is a collection where removing items is not supported—its purpose is to provide clients with the ability to collect items and then to iterate
through the collected items

TODAY'S LECTURE IN A NUTSHELL

18

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

DEPTH-FIRST SEARCH

Mazes as graphs

» Vertex = intersection; edge = passage

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

19

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

DEPTH-FIRST SEARCH

How to survive a maze: a lesson from a Greek myth

» Theseus escaped from the labyrinth after killing the Minotaur with the following
strategy instructed by Ariadne:

» Unroll a ball of string behind you.
» Mark each newly discovered intersection and passage.

» Retrace steps when no unmarked options.

» Also known as the Trémaux algorithm.
N> ~ I S=
| = =

~\)

\/*___/ —

g

20

DEPTH-FIRST SEARCH

Depth-first search

)

4

4

Goal: Systematically traverse a graph.

DFS (to visit a vertex v)

» Mark vertex V.

» Recursively visit all unmarked vertices W adjacent to v.

Typical applications:

» Find all vertices connected to a given vertex.

» Find a path between two vertices.

21

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.1 DEPTH-FIRST SEARCH DEMO

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

DEPTH-FIRST SEARCH 23

Recursive depth-first search

» Goal: Find all vertices connected to s (and a corresponding path).
» Idea: Mimic maze exploration.

» Algorithm:
» Use recursion (ball of string).

» Mark each visited vertex (and keep track of edge taken to visit it).

» Return (retrace steps) when no unvisited options.

» When started at vertex s, DFS marks all vertices connected to s (and no other).

DEPTH-FIRST SEARCH

Recursive implementation of depth-first search in Java

public class DepthFirstSearch {
private boolean[] marked; // marked[vV]

private int[] edgeTo; // edgeTo[V]

public DepthFirstSearch(Graph G, int s) {
marked = new boolean[G.V()];
edgeTo = new int[G.V()];
dfs (G, s);

}

// depth first search from v
private void dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.adj(v)) {
if (!marked[w]) {
edgeTo[w] = Vv;
dfs (G, w);

is there an s-v path?
previous vertex on path from s to v

DEPTH-FIRST SEARCH 25

PRACTICE TIME

» Run recursive DFS on the following graph starting at vertex 0 and
return the vertices in the order of being marked. Assume that the ad;j
method returns back the adjacent vertices in increasing numerical
order.

DEPTH-FIRST SEARCH

ANSWER

» Vertices marked as visited: 0,2, 3,4,1,5

marked edgeTo

<

— |-
= NN O B O

BN =IO

DEPTH-FIRST SEARCH

lterative depth-first search

» We can also implement depth-first search with an explicit stack instead of
recursion. Such an implementation would explore adjacent vertices in the
reverse order of the standard recursive DFS

27

DEPTH-FIRST SEARCH

Alternative iterative implementation with a stack

public class IterativeDFS {
private boolean[] marked; // marked[v] = is there an s->v path?
private int[] edgeTo; // edgeTo[v] = previous vertex on path from s to v

public IterativeDFS(Graph G, int s) {
marked = new boolean[G.V()];
edgeTo = new int[G.V()];
dfs (G, s);
}

// iterative dfs that uses a stack
private void dfs(Graph G, int v) {
Stack stack = new Stack();

stack.push(v);

while (!stack.isEmpty()) {
int vertex = stack.pop();
if (!marked[vertex]) {
marked[vertex] = true;
for (int w : G.adj(vertex)) {
if (!marked[w]) {
edgeTo[w] = vertex;

stack.push(w);

28

DEPTH-FIRST SEARCH

PRACTICE TIME

» Run the iterative DFS that uses a stack on the following graph
starting at vertex 0 and return the vertices in the order of being
marked. Assume that the adj method returns back the adjacent

vertices in increasing numerical orde

29

DEPTH-FIRST SEARCH

ANSWER

» Vertices marked as visited: 0, 5, 4, 2, 3, 1

marked edgeTo

<

— |-
ol v s B

BN =IO

DEPTH-FIRST SEARCH

31

ANSWER

» Vertices marked as visited in recursive DFS: 0, 2, 3,4,1,5

» Vertices marked as visited in iterative DFS: 0, 5, 4, 2, 3, 1

b Recursive DFS

Iterative DFS

DEPTH-FIRST SEARCH 32

Depth-first search Analysis

» DFS marks all vertices connected to S in time proportional to
| V| + | E] in the worst case.

» Initializing arrays marked and edgeTo takes time proportional to
|V].

» Each adjacency-list entry is examined exactly once and there are
2 | E'| such entries (two for each edge).

» Once we run DFS, we can check if vertex vV is connected to S in
constant time. We can also find the v-s path (if it exists) in time
proportional to its length.

TODAY'S LECTURE IN A NUTSHELL

33

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

BREADTH-FIRST SEARCH

Breadth-first search

» BFS (from source vertex S)
» Puts on aqueue and mark it as visited.

» Repeat until the queue is empty:

» Dequeue vertex v.

» Enqueue each of V's unmarked neighbors and mark them.

» Basic idea: BFS traverses vertices in order of distance from s.

34

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.1 BREADTH-FIRST SEARCH DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

BREADTH-FIRST SEARCH

Breadth-first search in Java

public class BreadthFirstSearch {

private boolean[] marked; // marked[v] = is there an s-v path
private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
private int[] distTo; // distTo[v] = number of edges shortest s-v path

public BreadthFirstSearch(Graph G, int s) {
marked = new boolean[G.V()];
distTo = new int[G.V()];
edgeTo = new int[G.V()];
bfs (G, s);
}

private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>();
distTo[s] = 0;
marked[s] = true;
g.enqueue(s);

while (!qg.isEmpty()) {
int v = g.dequeue();
for (int w : G.adj(v)) {
if (!marked[w]) {

edgeTo[w] = v;
distTo[w] = distTo[v] + 1;
marked[w] = true;

d.enqueue (w) ;

36

BREADTH-FIRST SEARCH

PRACTICE TIME

» Run the BFS on the following graph starting at vertex 0 and return
the vertices in the order of being marked. Assume that the ad|
method returns back the adjacent vertices in increasing numerical
order.

37

DEPTH-FIRST SEARCH

38

ANSWER

» Vertices marked as visited: 0, 2,4, 5, 3, 1

marked edgeTo distTo

O1 (1IN = IO]I<

~A A
OCQIOIN OB IO
== 1IN=IN O

BREADTH-FIRST SEARCH 39

Summary

» DFS: Put unvisited vertices on a stack.

» BFS: Put unvisited vertices on a queue.

» Shortest path problem: Find path from s to t that uses the fewest number of edges.
» E.g., calculate the fewest numbers of hops in a communication network.
» E.g., calculate the Kevin Bacon number or Erdés number.

» BFS computes shortest paths from s to all vertices in a graph in time proportional to
|[E]+ V]

» The queue always consists of zero or more vertices of distance k from s, followed
by zero or more vertices of k+1.

TODAY'S LECTURE IN A NUTSHELL

40

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION TO DIRECTED GRAPHS @ 4]

Directed Graph Terminology %

» Directed Graph (digraph) : a set of vertices V connected pairwise by a set of directed edges E.

» E.g.,V={0,1,2,3,4,5,6,7,8,9,10,11,12},
E={{0,1},{0,5},{2,0}, {2,3}{3,2}{3,5}.{4,2}{4,3}{5,4}{6,0}{6,4}{6,9}{7.,6}{7,8}{8,7}{8,9},
{9,101,49,11},{10,12},{11,4},{11,12}1{12,9}.

» Directed path: a sequence of vertices in which there is a directed edge pointing from each
vertex in the sequence to its successor in the sequence, with no repeated edges.

» Asimple directed path is a directed path with no repeated vertices.

» Directed cycle: Directed path with at least one edge whose first and last vertices are the
same.

» Asimple directed cycle is a directed cycle with no repeated vertices (other than the first
and last).

» The length of a cycle or a path is its number of edges.

INTRODUCTION TO DIRECTED GRAPHS ED 42

Directed Graph Terminology

» Self-loop: an edge that connects a vertex to itself.

» Two edges are parallel if they connect the same pair of vertices.

» The outdegree of a vertex is the number of edges pointing from it.
» The indegree of a vertex is the number of edges pointing to it.

» Avertex Wis reachable from a vertex v if there is a directed path
from v to w.

» Two vertices vV and W are strongly connected if they are mutually
reachable.

Directed Graph Terminology ﬁf

@/

» A digraph is strongly connected if there is a directed path
from every vertex to every other vertex.

INTRODUCTION TO DIRECTED GRAPHS W 43
SN
O~

» A digraph that is not strongly connected consists of a set
of strongly connected components, which are maximal
strongly connected subgraphs.

» A directed acyclic graph (DAG) is a digraph with no
directed cycles.

INTRODUCTION TO DIRECTED GRAPHS

b4

Anatomy of a digraph

directed
edge
diref:cd 1 vertex
0
l?:gthg\ 1
vertex of
indegree 3 and
outdegree 2
Anatomy of a digraph

A digraph and its strong components

INTRODUCTION TO DIRECTED GRAPHS

45

Digraph Applications

Digraph Vertex Edge
Web Web page Link
Cell phone Person Placed call
Financial Bank Transaction
Transportation Intersection One-way street
Game Board Legal move
Citation Article Citation
Infectious Diseases Person Infection
Food web Species Predator-prey

relationship

INTRODUCTION TO DIRECTED GRAPHS

Popular digraph problems

Problem

s->t path

Description

Is there a path from s to t?

Shortest s->t path

What is the shortest path from s to t?

Directed cycle

Is there a directed cycle in the digraph?

Topological sort

Can vertices be sorted so all edges point from earlier to
later vertices?

Strong connectivity

Is there a directed path between every pair of vertices?

46

TODAY'S LECTURE IN A NUTSHELL

47

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

DIRECTED GRAPHS 48

Basic Graph API

» public class Digraph

4

4

4

4

4

4

Digraph(int V): create an empty digraph with V vertices.
vold addEdge(int v, 1nt w):add an edge v->w.

Iterable<Integer> adj(int v):return vertices adjacent from

V.

1nt V(O): number of vertices.
int EQ): number of edges.

Digraph reverse(): reverse edges of digraph.

DIRECTED GRAPHS

Digraph representation: adjacency list

» Maintain vertex-indexed array of lists.

» Good for sparse graphs (edges proportional to

| V|) which are much more common in the real
world.

» Algorithms based on iterating over vertices
adjacent from v.

» Space efficient(|E|+|V]).
» Constant time for adding a directed edge.

» Lookup of a directed edge or iterating over
vertices adjacent from v is outdegree(v).

adj [

0 00 N OO bW N e O

i
N O

11

10

12

12

DIRECTED GRAPHS

Adjacency-list digraph representation in Java

public class Digraph {

private final int V;
private int E;
private Bag<Integer>[] adj;

//Initializes an empty digraph with V vertices and 0 edges.
public Digraph(int V) {
this.V = V;

this.E = 0;

adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++) {
adj[v] = new Bag<Integer>();

}

}

//Adds the directed edge v->w to this digraph.
public void addEdge(int v, int w) {

E++;

adj[v].add(w);

//Returns the vertices adjacent from vertex v.
public Iterable<Integer> adj(int v) {
return adj[v];

}

50

TODAY'S LECTURE IN A NUTSHELL

51

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

DEPTH-FIRST SEARCH

Reachability

» Find all vertices reachable from s along a directed path.

L] * ®
! L] SRR
Y Y | i Y Y
® >0« O >0 »>0-=« < ’ - @
A A A ‘
Y v | | |
Q—»Qd——?-—»‘ﬁ‘«—‘<-~’—->‘
A A |
Y Y | | Y Y
Y | | Y
e o< —¢<—o—>§<——’—n
A |
o< o » »k‘ .
e > N
" T & R
Y Y Y
| SRR S L—»O—»Q« — =9
v o 1] b A '|
\ .
*Q—>Q—>‘<—‘—>Q4—-- 0= @

Is w reachable from v in this digraph?

https://apprize.info/science/algorithms 2/2.html

52

https://apprize.info/science/algorithms_2/2.html

DEPTH-FIRST SEARCH

Depth-first search in digraphs

» Same method as for undirected graphs.
» Every undirected graph is a digraph with edges in both directions.
» Maximum number of edges in a simple digraph is n(n — 1).
» DFS (to visit a vertex v)
» Mark vertex v.
» Recursively visit all unmarked vertices w adjacent from v.

» Typical applications:

» Find a directed path from source vertex s to a given target vertex v.

» Topological sort.

» Directed cycle detection.

53

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED DFS DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

DEPTH-FIRST SEARCH

Directed depth-first search in Java

public class DirectedDFS {
private boolean[] marked; // marked[v] = is there an s->v path?

public DirectedDFS(Digraph G, int s) {
marked = new boolean[G.V()];
dfs (G, s);
}

// directed depth first search from v
private void dfs(Digraph G, int v) {
marked[v] = true;
for (int w : G.adj(v)) {
if (!marked[w]) {
dfs (G, w);
}

55

DEPTH-FIRST SEARCH

Alternative iterative implementation with a stack

public class DirectedDFS {
private boolean|[] marked; // marked[v] = is there an s->v path?

public DirectedDFS(Digraph G, int s) {
marked = new boolean[G.V()];
dfs (G, s);
}

// iterative dfs that uses a stack
private void dfs(Digraph G, int v) {
Stack stack = new Stack();
s.push(v);
while (!stack.isEmpty()) {
int vertex = stack.pop();
if (!marked[vertex]) {
marked[vertex] = true;
for (int w : G.adj(vertex)) {
if (!marked[w])
stack.push(w);

56

DEPTH-FIRST SEARCH 57

Depth-first search Analysis

» DFS marks all vertices reachable from s in time proportional to
| V| + | E] in the worst case.

» Initializing arrays marked takes time proportional to | V|.

» Each adjacency-list entry is examined exactly once and there are E
such edges.

» Once we run DFS, we can check if vertex v is reachable from s in
constant time. We can also find the s->V path (if it exists) in time
proportional to its length.

TODAY'S LECTURE IN A NUTSHELL

58

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

BREADTH-FIRST SEARCH

Breadth-first search

» Same method as for undirected graphs.

» Every undirected graph is a digraph with edges in both directions.

» BFS (from source vertex S)

» Puts on queue and mark s as visited.
» Repeat until the queue is empty:

» Dequeue vertex V.

» Enqueue all unmarked vertices adjacent from v, and mark them.

» Typical applications:

» Find the shortest (in terms of number of edges) directed path between two vertices in time
proportional to |E| + | V].

59

A 1 g Orl thm S ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED BFS DEMO

Algorithms

ROBERT SEDGEWICK | KEvIN WAYNE

http://algs4.cs.princeton.edu

BREADTH-FIRST SEARCH

61

Summary

» Single-source reachability in a digraph: DFS/BFS.

» Shortest path in a digraph: BFS.

TODAY'S LECTURE IN A NUTSHELL

62

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

STRONGLY CONNECTED COMPONENTS 63

Is a digraph strongly connected?

» Astrongly connected digraph is a directed graph in which it is possible to reach
any vertex starting from any other vertex by traversing edges.

» Pick a random starting vertex s.
» Run DFS/BFS starting at s.
» If have not reached all vertices, return false.
» Reverse edges.
» Run DFS/BFS again on reversed graph.

» If have not reached all vertices, return false.

» Else return true.

TODAY'S LECTURE IN A NUTSHELL

64

Lecture 22: Graphs

» Undirected Graphs
» Graph API
» Depth-First Search
» Breadth-First Search
» Directed Graphs
» Digraph API
» Depth-First Search
» Breadth-First Search

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

ASSIGNED READINGS AND PRACTICE PROBLEMS

65

Readings:

» Recommended Textbook: Chapter 4.1 (Pages 522-556), Chapter 4.2 (Pages
566-594)

» Website:

» https://algs4.cs.princeton.edu/41graph/

» https://algs4.cs.princeton.edu/42digraph/

Practice Problems:

» 4.1.1-4.1.6,4.1.9,4.1.11

» 4.2.1-4.27

https://algs4.cs.princeton.edu/41graph/
https://algs4.cs.princeton.edu/42digraph/

