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TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance
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BINARY SEARCH TREES CAN BECOME IMBALANCED

Visualization of insertion into a binary search tree

▸ 255 insertions in random order.
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2-3 SEARCH TREES

2-3 tree
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▸ Definition: A 2-3 tree is either empty or a 

▸ 2-node: one key (and associated value) and two links, a left to a 2-3 
search tree with smaller keys, and a right to a 2-3 search tree with larger 
keys (similarly to standard BSTs), or a 

▸ 3-node: two keys (and associated values) and three links, a left to a 2-3 
search tree with smaller keys, a middle to a 2-3 search tree with keys 
between the node’s keys, and a right to a 2-3 search tree with larger keys. 

▸ Symmetric order: In-order traversal yields keys in ascending order. 

▸ Perfect balance: Every path from root to null link (empty tree) has the same 
length.



2-3 SEARCH TREES

Example of a 2-3 tree
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▸ 2-node, business as usual with BSTs. 

▸ (e.g.,  EJ are smaller than M and R is larger than M). 

▸ In 3-node,  

▸ left link points to 2-3 search tree with smaller keys than first key, 

▸ (e.g., AC are smaller than E.) 

▸ middle link points to 2-3 search tree with keys between first and 
second key, 

▸ (e.g. H is between E and J.) 

▸ right link points to 2-3 search tree with keys larger than second 
key. 

▸ (e.g, L is larger than J).



TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance
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SEARCH

How to search for a key
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▸ Compare search key against (every) key in node. 

▸ Find interval containing search key (left, potentially middle, or right). 

▸ Follow associated link, recursively.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance
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INSERTION

How to insert into a 2-node
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▸ Search for key and add new key to 2-node to create a 3-node.
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INSERTION

How to insert into a tree consisting of a single 3-node
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▸ Add new key to 3-node to create a 
temporary 4-node. 

▸ Move middle key in 4-node into 
parent. 

▸ Split 4-node into two 2-nodes. 

▸ Height went up by 1.



INSERTION

How to insert into a 3-node whose parent is a 2-node
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▸ Add new key to 3-node to create a 
temporary 4-node. 

▸ Split 4-node into two 2-nodes and 
pass middle key to parent. 

▸ Replace 2-node parent with 3-node.



INSERTION

How to insert into a 3-node whose parent is a 3-node
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▸ Add new key to 3-node to create a 
temporary 4-node. 

▸ Split 4-node into two 2-nodes and 
pass middle key to parent creating a 
temporary 4-node. 

▸ Split 4-node into two 2-nodes and 
pass middle key to parent. 

▸ Repeat up the tree, as necessary.



INSERTION

Splitting the root
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▸ If end up with a temporary 4-node 
root, split into three 2-nodes. 

▸ Increases height by 1 but perfect 
balance is preserved.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 
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CONSTRUCTION

Practice Time

19

▸ Draw the 2-3 tree that results when you insert the keys: 
E A S Y Q U T I O N in that order in an initially empty tree.



CONSTRUCTION

Answer
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▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance
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PERFORMANCE

Height of 2-3 search trees
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▸ Worst case:  (all 2-nodes). 

▸ Best case:  (all 3-nodes)  

▸ That means that storing a million nodes will lead to a tree with height between 
12 and 20, and storing a billion nodes to a tree with height between 19 and 
30 (not bad!). 

▸  Search and insert are ! 

▸ But implementation is a pain and the overhead incurred could make the 
algorithms slower than standard BST search and insert.  

▸ We did provide insurance against a worst case but we would prefer the overhead 
cost for that insurance to be low. Stay tuned!

log n

log3 n = 0.631 log n

O(log n)



PERFORMANCE

Summary for symbol table/dictionary operations
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Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search 
trees

n n n log n log n n

log n log n log nlog nlog nlog n



TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context
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Some slides adopted from Algorithms 4th Edition or COS226



INTRODUCTION

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

▸ Start with standard BSTs which are made up of 2-nodes. 

▸ Add extra information to encode 3-nodes. We will introduce two types 
of links. 

▸ Red links: bind together two 2-nodes to represent a 3-node. 

▸ Specifically, 3-nodes are represented as two 2-nodes connected by 
a single red link that leans left (one of the 2-nodes is the left child of 
the other). 

▸ Black links: bind together the 2-3 tree.  

▸ Advantage: Can use BST code with minimal modification. 
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INTRODUCTION

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees
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INTRODUCTION

Definition

▸ A left-leaning red-black tree is a BST such that: 

▸ No node has two red links connected to it. 

▸ Red link leans left. 

▸ Every path from root to leaves has the same number of 
black links (perfect black balance).
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INTRODUCTION

Search

▸ Exactly the same as for elementary BSTs (we ignore the color). 

▸ But runs faster because of better balance.  
    public Value get(Key key) {
        if (key == null) throw new IllegalArgumentException("argument to get() is null");
        return get(root, key);
    }

    // value associated with the given key in subtree rooted at x; null if no such key
    private Value get(Node x, Key key) {
        while (x != null) {
            int cmp = key.compareTo(x.key);
            if      (cmp < 0) x = x.left;
            else if (cmp > 0) x = x.right;
            else              return x.val;
        }
        return null;
    }

▸ Operations such as floor, iteration, rank, selection are also 
identical.
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INTRODUCTION

Representation

▸ Each node is pointed to by one node, its parent. We can use this to 
encode the color of the links in nodes.  

▸ True if the link from the parent is red and false if it is black. Null links 
are black. 

    private static final boolean RED   = true;
    private static final boolean BLACK = false;

    private Node root;     // root of the BST

    // BST helper node data type
    private class Node {
        private Key key;           // key
        private Value val;         // associated data
        private Node left, right;  // links to left and right subtrees
        private boolean color;     // color of parent link
        private int size;          // subtree count

    private boolean isRed(Node x) {
        if (x == null) return false;
        return x.color == RED;
    }
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INTRODUCTION

Story so far

▸ BSTs can get imbalanced and long. 

▸ 2-3 trees are balanced but cumbersome to code. 

▸ Imagine 3-nodes held together by internal glue links 
shown in red. 

▸ Draw links by giving them red or black color. 

▸ Represent them in memory by storing the color of the link 
coming from the parent as the color of the child node.
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INTRODUCTION

Practice Time

▸ Which of the following are legal LLRB trees?
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INTRODUCTION

Answer

▸ Which of the following are legal LLRB trees? 

▸ iii and iv 

▸ i is not balanced and ii is also not in symmetrical order

32



TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context
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ELEMENTARY RED-BLACK BST OPERATIONS

Left rotation: Orient a (temporarily) right-leaning red link to lean left
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ELEMENTARY RED-BLACK BST OPERATIONS

Right rotation: Orient a left-leaning red link to a (temporarily) lean right
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ELEMENTARY RED-BLACK BST OPERATIONS

Color flip: Recolor to split a (temporary) 4-node
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TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction 

▸ Elementary red-black BST operations 

▸ Insertion 

▸ Mathematical analysis 

▸ Historical context

37



INSERTION

Basic strategy: Maintain 1-1 correspondence with 2-3 trees

▸ During internal operations, maintain: 

▸ symmetric order. 

▸ perfect black balance. 

▸ But we might violate color invariants. For example: 

▸ Right-leaning red link. 

▸ Two red children (temporary 4-node). 

▸ Left-left red (temporary 4-node). 

▸ Left-right red (temporary 4-node). 

▸ To restore color invariant we will be performing rotations and color flips.

38



INSERTION

Insertion into a LLRB

▸ Do standard BST insertion and color the new link red. 

▸ Repeat until color invariants restored: 

▸ Both children red? Flip colors. 

▸ Right link red? Rotate left. 

▸ Two left reds in a row? Rotate right.
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INSERTION

Implementation

▸ Only three cases: 

▸ Right child red; left child black: rotate left. 

▸ Left child red; left-left grandchild red: rotate right. 

▸ Both children red: flip colors. 
    // insert the key-value pair in the subtree rooted at h
    private Node put(Node h, Key key, Value val) { 
        if (h == null) return new Node(key, val, RED, 1);

        int cmp = key.compareTo(h.key);
        if      (cmp < 0) h.left  = put(h.left,  key, val); 
        else if (cmp > 0) h.right = put(h.right, key, val); 
        else              h.val   = val;

        // fix-up any right-leaning links
        if (isRed(h.right) && !isRed(h.left))      h = rotateLeft(h);
        if (isRed(h.left)  &&  isRed(h.left.left)) h = rotateRight(h);
        if (isRed(h.left)  &&  isRed(h.right))     flipColors(h);
        h.size = size(h.left) + size(h.right) + 1;

        return h;
    }
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INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in ascending order.
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INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in descending order.
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INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in random order.
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MATHEMATICAL ANALYSIS

Balance in LLRB trees

▸ Height of LLRB trees is  in the worst case. 

▸ Worst case is a 2-3 tree that is all 2-nodes except that the 
left-most path is made up of 3-nodes. 

▸ All ordered operations (min, max, floor, ceiling) etc. are 
also .

≤ 2 log n

O(log n)
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PERFORMANCE

Summary for dictionary/symbol table operations
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Worst case Average case

Search Insert Delete Search Insert Delete

Sequential 
search 

(unordered 
Binary search 

(ordered 
array)

BST

2-3 search 
tree

Red-black 
BSTs

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

n
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HISTORICAL CONTEXT

Red-black trees

▸ A dichromatic framework for balanced trees. [Guibas and 
Sedgewick, 1978]. 

▸ Why red-black? Xerox PARC had a laser printer and red and 
black had the best contrast… 

▸ Left-leaning red-black trees [Sedgewick, 2008] 

▸ Inspired by difficulties in proper implementation of RB BSTs. 

▸ RB BSTs have been involved in lawsuit because of improper 
implementation. 
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HISTORICAL CONTEXT

Balanced trees in the wild

▸ Red-black trees are widely used as system dictionaries. 

▸ e.g., Java: java.util.TreeMap and 
java.util.TreeSet. 

▸ Other balanced BSTs: AVL, splay, randomized. 

▸ 2-3 search trees are a subset of b-trees. 

▸ See recommended textbook for more. 

▸ B-trees are widely used for file systems and databases.
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapter 3.3 (Pages 424-447) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/33balanced/ 

▸ Visualization: 

▸ https://www.cs.usfca.edu/~galles/visualization/BTree.html (for 2-3 trees) 

▸ https://algs4.cs.princeton.edu/GrowingTree/ (for LLRB trees)

51

Practice Problems:

▸ 3.2.1-3.2.13, 3.3.2-3.3.5, 3.3.9-3.3.22 

▸ In-class worksheet

https://algs4.cs.princeton.edu/33balanced/
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://algs4.cs.princeton.edu/GrowingTree/
https://cs.pomona.edu/classes/cs62/worksheets/Lecture20_worksheet.pdf

