
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

20: Balanced Binary Search Trees

SEARCHING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

2

BINARY SEARCH TREES CAN BECOME IMBALANCED

Visualization of insertion into a binary search tree

▸ 255 insertions in random order.

3

2-3 SEARCH TREES

2-3 tree

4

▸ Definition: A 2-3 tree is either empty or a

▸ 2-node: one key (and associated value) and two links, a left to a 2-3
search tree with smaller keys, and a right to a 2-3 search tree with larger
keys (similarly to standard BSTs), or a

▸ 3-node: two keys (and associated values) and three links, a left to a 2-3
search tree with smaller keys, a middle to a 2-3 search tree with keys
between the node’s keys, and a right to a 2-3 search tree with larger keys.

▸ Symmetric order: In-order traversal yields keys in ascending order.

▸ Perfect balance: Every path from root to null link (empty tree) has the same
length.

2-3 SEARCH TREES

Example of a 2-3 tree

5

▸ 2-node, business as usual with BSTs.

▸ (e.g., EJ are smaller than M and R is larger than M).

▸ In 3-node,

▸ left link points to 2-3 search tree with smaller keys than first key,

▸ (e.g., AC are smaller than E.)

▸ middle link points to 2-3 search tree with keys between first and
second key,

▸ (e.g. H is between E and J.)

▸ right link points to 2-3 search tree with keys larger than second
key.

▸ (e.g, L is larger than J).

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

6

SEARCH

How to search for a key

7

▸ Compare search key against (every) key in node.

▸ Find interval containing search key (left, potentially middle, or right).

▸ Follow associated link, recursively.

8

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

9

INSERTION

How to insert into a 2-node

10

▸ Search for key and add new key to 2-node to create a 3-node.

11

INSERTION

How to insert into a tree consisting of a single 3-node

12

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Move middle key in 4-node into
parent.

▸ Split 4-node into two 2-nodes.

▸ Height went up by 1.

INSERTION

How to insert into a 3-node whose parent is a 2-node

13

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Replace 2-node parent with 3-node.

INSERTION

How to insert into a 3-node whose parent is a 3-node

14

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent creating a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Repeat up the tree, as necessary.

INSERTION

Splitting the root

15

▸ If end up with a temporary 4-node
root, split into three 2-nodes.

▸ Increases height by 1 but perfect
balance is preserved.

16

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

17

18

CONSTRUCTION

Practice Time

19

▸ Draw the 2-3 tree that results when you insert the keys:
E A S Y Q U T I O N in that order in an initially empty tree.

CONSTRUCTION

Answer

20

▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

21

PERFORMANCE

Height of 2-3 search trees

22

▸ Worst case: (all 2-nodes).

▸ Best case: (all 3-nodes)

▸ That means that storing a million nodes will lead to a tree with height between
12 and 20, and storing a billion nodes to a tree with height between 19 and
30 (not bad!).

▸ Search and insert are !

▸ But implementation is a pain and the overhead incurred could make the
algorithms slower than standard BST search and insert.

▸ We did provide insurance against a worst case but we would prefer the overhead
cost for that insurance to be low. Stay tuned!

log n

log3 n = 0.631 log n

O(log n)

PERFORMANCE

Summary for symbol table/dictionary operations

23

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search
trees

n n n log n log n n

log n log n log nlog nlog nlog n

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

24

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

▸ Start with standard BSTs which are made up of 2-nodes.

▸ Add extra information to encode 3-nodes. We will introduce two types
of links.

▸ Red links: bind together two 2-nodes to represent a 3-node.

▸ Specifically, 3-nodes are represented as two 2-nodes connected by
a single red link that leans left (one of the 2-nodes is the left child of
the other).

▸ Black links: bind together the 2-3 tree.

▸ Advantage: Can use BST code with minimal modification.

25

INTRODUCTION

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

26

INTRODUCTION

Definition

▸ A left-leaning red-black tree is a BST such that:

▸ No node has two red links connected to it.

▸ Red link leans left.

▸ Every path from root to leaves has the same number of
black links (perfect black balance).

27

INTRODUCTION

Search

▸ Exactly the same as for elementary BSTs (we ignore the color).

▸ But runs faster because of better balance.
 public Value get(Key key) {
 if (key == null) throw new IllegalArgumentException("argument to get() is null");
 return get(root, key);
 }

 // value associated with the given key in subtree rooted at x; null if no such key
 private Value get(Node x, Key key) {
 while (x != null) {
 int cmp = key.compareTo(x.key);
 if (cmp < 0) x = x.left;
 else if (cmp > 0) x = x.right;
 else return x.val;
 }
 return null;
 }

▸ Operations such as floor, iteration, rank, selection are also
identical.

28

INTRODUCTION

Representation

▸ Each node is pointed to by one node, its parent. We can use this to
encode the color of the links in nodes.

▸ True if the link from the parent is red and false if it is black. Null links
are black.

 private static final boolean RED = true;
 private static final boolean BLACK = false;

 private Node root; // root of the BST

 // BST helper node data type
 private class Node {
 private Key key; // key
 private Value val; // associated data
 private Node left, right; // links to left and right subtrees
 private boolean color; // color of parent link
 private int size; // subtree count

 private boolean isRed(Node x) {
 if (x == null) return false;
 return x.color == RED;
 }

29

INTRODUCTION

Story so far

▸ BSTs can get imbalanced and long.

▸ 2-3 trees are balanced but cumbersome to code.

▸ Imagine 3-nodes held together by internal glue links
shown in red.

▸ Draw links by giving them red or black color.

▸ Represent them in memory by storing the color of the link
coming from the parent as the color of the child node.

30

INTRODUCTION

Practice Time

▸ Which of the following are legal LLRB trees?

31

INTRODUCTION

Answer

▸ Which of the following are legal LLRB trees?

▸ iii and iv

▸ i is not balanced and ii is also not in symmetrical order

32

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

33

ELEMENTARY RED-BLACK BST OPERATIONS

Left rotation: Orient a (temporarily) right-leaning red link to lean left

34

ELEMENTARY RED-BLACK BST OPERATIONS

Right rotation: Orient a left-leaning red link to a (temporarily) lean right

35

ELEMENTARY RED-BLACK BST OPERATIONS

Color flip: Recolor to split a (temporary) 4-node

36

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

37

INSERTION

Basic strategy: Maintain 1-1 correspondence with 2-3 trees

▸ During internal operations, maintain:

▸ symmetric order.

▸ perfect black balance.

▸ But we might violate color invariants. For example:

▸ Right-leaning red link.

▸ Two red children (temporary 4-node).

▸ Left-left red (temporary 4-node).

▸ Left-right red (temporary 4-node).

▸ To restore color invariant we will be performing rotations and color flips.

38

INSERTION

Insertion into a LLRB

▸ Do standard BST insertion and color the new link red.

▸ Repeat until color invariants restored:

▸ Both children red? Flip colors.

▸ Right link red? Rotate left.

▸ Two left reds in a row? Rotate right.

39

40

INSERTION

Implementation

▸ Only three cases:

▸ Right child red; left child black: rotate left.

▸ Left child red; left-left grandchild red: rotate right.

▸ Both children red: flip colors.
 // insert the key-value pair in the subtree rooted at h
 private Node put(Node h, Key key, Value val) {
 if (h == null) return new Node(key, val, RED, 1);

 int cmp = key.compareTo(h.key);
 if (cmp < 0) h.left = put(h.left, key, val);
 else if (cmp > 0) h.right = put(h.right, key, val);
 else h.val = val;

 // fix-up any right-leaning links
 if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
 if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
 if (isRed(h.left) && isRed(h.right)) flipColors(h);
 h.size = size(h.left) + size(h.right) + 1;

 return h;
 }

41

INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in ascending order.

42

INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in descending order.

43

INSERTION

Visualization of insertion into a LLRB tree

▸ 255 insertions in random order.

44

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

45

MATHEMATICAL ANALYSIS

Balance in LLRB trees

▸ Height of LLRB trees is in the worst case.

▸ Worst case is a 2-3 tree that is all 2-nodes except that the
left-most path is made up of 3-nodes.

▸ All ordered operations (min, max, floor, ceiling) etc. are
also .

≤ 2 log n

O(log n)

46

PERFORMANCE

Summary for dictionary/symbol table operations

47

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered
Binary search

(ordered
array)

BST

2-3 search
tree

Red-black
BSTs

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

n

TODAY’S LECTURE IN A NUTSHELL

Lecture 20: Left-leaning Red-Black Trees

▸ Introduction

▸ Elementary red-black BST operations

▸ Insertion

▸ Mathematical analysis

▸ Historical context

48

HISTORICAL CONTEXT

Red-black trees

▸ A dichromatic framework for balanced trees. [Guibas and
Sedgewick, 1978].

▸ Why red-black? Xerox PARC had a laser printer and red and
black had the best contrast…

▸ Left-leaning red-black trees [Sedgewick, 2008]

▸ Inspired by difficulties in proper implementation of RB BSTs.

▸ RB BSTs have been involved in lawsuit because of improper
implementation.

49

HISTORICAL CONTEXT

Balanced trees in the wild

▸ Red-black trees are widely used as system dictionaries.

▸ e.g., Java: java.util.TreeMap and
java.util.TreeSet.

▸ Other balanced BSTs: AVL, splay, randomized.

▸ 2-3 search trees are a subset of b-trees.

▸ See recommended textbook for more.

▸ B-trees are widely used for file systems and databases.

50

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapter 3.3 (Pages 424-447)

▸ Website:

▸ https://algs4.cs.princeton.edu/33balanced/

▸ Visualization:

▸ https://www.cs.usfca.edu/~galles/visualization/BTree.html (for 2-3 trees)

▸ https://algs4.cs.princeton.edu/GrowingTree/ (for LLRB trees)

51

Practice Problems:

▸ 3.2.1-3.2.13, 3.3.2-3.3.5, 3.3.9-3.3.22

▸ In-class worksheet

https://algs4.cs.princeton.edu/33balanced/
https://www.cs.usfca.edu/~galles/visualization/BTree.html
https://algs4.cs.princeton.edu/GrowingTree/
https://cs.pomona.edu/classes/cs62/worksheets/Lecture20_worksheet.pdf

