CS062 DATA STRUCTURES AND ADVANCED PROGRAMMING

20: Balanced Binary Search Trees

Alexandra Papoutsaki she/her/hers Lecture 20: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

Visualization of insertion into a binary search tree

> 255 insertions in random order.

3-node E A C H D P S X null link

2-3 tree

- Definition: A 2-3 tree is either empty or a
 - 2-node: one key (and associated value) and two links, a left to a 2-3 search tree with smaller keys, and a right to a 2-3 search tree with larger keys (similarly to standard BSTs), or a
 - 3-node: two keys (and associated values) and three links, a left to a 2-3 search tree with smaller keys, a middle to a 2-3 search tree with keys between the node's keys, and a right to a 2-3 search tree with larger keys.
- Symmetric order: In-order traversal yields keys in ascending order.
- Perfect balance: Every path from root to null link (empty tree) has the same length.

Example of a 2-3 tree

- > 2-node, business as usual with BSTs.
 - (e.g., EJ are smaller than M and R is larger than M).
- ▶ In 3-node,
 - Ieft link points to 2-3 search tree with smaller keys than first key,
 - (e.g., AC are smaller than E.)
 - middle link points to 2-3 search tree with keys between first and second key,
 - (e.g. H is between E and J.)
 - right link points to 2-3 search tree with keys larger than second key.
 - (e.g, L is larger than J).

Anatomy of a 2-3 search tree

Lecture 20: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

How to search for a key

- Compare search key against (every) key in node.
- Find interval containing search key (left, potentially middle, or right).
- Follow associated link, recursively.

3.3 2-3 TREE DEMO

search

insertion

construction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Lecture 20: 2-3 Search Trees

- 2-3 Search Trees
- Search

Insertion

- Construction
- Performance

How to insert into a 2-node

Search for key and add new key to 2-node to create a 3-node.

Insert into a 2-node

2-3 tree demo: insertion

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

How to insert into a tree consisting of a single 3-node

- Add new key to 3-node to create a temporary 4-node.
- Move middle key in 4-node into parent.
- Split 4-node into two 2-nodes.
- Height went up by 1.

inserting S no room for S make a 4-node split 4-node into this 2-3 tree

Insert into a single 3-node

How to insert into a 3-node whose parent is a 2-node

- Add new key to 3-node to create a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent.
- Replace 2-node parent with 3-node.

Insert into a 3-node whose parent is a 2-node

How to insert into a 3-node whose parent is a 3-node

- Add new key to 3-node to create a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent creating a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent.
- Repeat up the tree, as necessary.

Insert into a 3-node whose parent is a 3-node

Splitting the root

- If end up with a temporary 4-node root, split into three 2-nodes.
- Increases height by 1 but perfect balance is preserved.

Splitting the root

2-3 tree demo: insertion

Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

Lecture 20: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

2-3 tree demo: construction

insert R

Practice Time

Draw the 2-3 tree that results when you insert the keys: EASYQUTION in that order in an initially empty tree. Answer

EASYQUTION

Lecture 20: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

Height of 2-3 search trees

- ▶ Worst case: log *n* (all 2-nodes).
- Best case: $\log_3 n = 0.631 \log n$ (all 3-nodes)
 - That means that storing a million nodes will lead to a tree with height between 12 and 20, and storing a billion nodes to a tree with height between 19 and 30 (not bad!).
- Search and insert are O(log n)!
- But implementation is a pain and the overhead incurred could make the algorithms slower than standard BST search and insert.
- We did provide insurance against a worst case but we would prefer the overhead cost for that insurance to be low. Stay tuned!

Summary for symbol table/dictionary operations

	Worst case			Average case		
	Search	Insert	Delete	Search	Insert	Delete
BST	п	п	п	log n	log n	\sqrt{n}
2-3 search trees	log n	log n	log n	log n	log n	log n

Lecture 20: Left-leaning Red-Black Trees

Introduction

- Elementary red-black BST operations
- Insertion
- Mathematical analysis
- Historical context

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

- Start with standard BSTs which are made up of 2-nodes.
- Add extra information to encode 3-nodes. We will introduce two types of links.
- Red links: bind together two 2-nodes to represent a 3-node.
 - Specifically, 3-nodes are represented as two 2-nodes connected by a single red link that leans left (one of the 2-nodes is the left child of the other).
- Black links: bind together the 2-3 tree.
- Advantage: Can use BST code with minimal modification.

Left-leaning red-black BSTs correspond 1-1 with 2-3 trees

1-1 correspondence between red-black BSTs and 2-3 trees

Definition

- A left-leaning red-black tree is a BST such that:
 - No node has two red links connected to it.
 - Red link leans left.
 - Every path from root to leaves has the same number of black links (perfect black balance).

Search

- Exactly the same as for elementary BSTs (we ignore the color).
 - But runs faster because of better balance.

```
public Value get(Key key) {
    if (key == null) throw new IllegalArgumentException("argument to get() is null");
    return get(root, key);
}
// value associated with the given key in subtree rooted at x; null if no such key
private Value get(Node x, Key key) {
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else return x.val;
    }
    return null;
}
```

Operations such as floor, iteration, rank, selection are also identical.

Representation

- Each node is pointed to by one node, its parent. We can use this to encode the color of the links in nodes.
- True if the link from the parent is red and false if it is black. Null links are black.

```
private static final boolean RED = true;
private static final boolean BLACK = false;
private Node root;
                       // root of the BST
// BST helper node data type
private class Node {
    private Key key;
                               // key
    private Value val;
                               // associated data
    private Node left, right; // links to left and right subtrees
    private boolean color;
                               // color of parent link
    private int size;
                               // subtree count
private boolean isRed(Node x) {
    if (x == null) return false;
    return x.color == RED;
}
```


Story so far

- BSTs can get imbalanced and long.
- 2-3 trees are balanced but cumbersome to code.
- Imagine 3-nodes held together by internal glue links shown in red.
- Draw links by giving them red or black color.
- Represent them in memory by storing the color of the link coming from the parent as the color of the child node.

Practice Time

Which of the following are legal LLRB trees?

Answer

- Which of the following are legal LLRB trees?
- iii and iv
 - i is not balanced and ii is also not in symmetrical order

Lecture 20: Left-leaning Red-Black Trees

- Introduction
- Elementary red-black BST operations
- Insertion
- Mathematical analysis
- Historical context

Left rotation: Orient a (temporarily) right-leaning red link to lean left

Left rotate (right link of h)

Right rotation: Orient a left-leaning red link to a (temporarily) lean right

Right rotate (left link of h)

Color flip: Recolor to split a (temporary) 4-node

Lecture 20: Left-leaning Red-Black Trees

- Introduction
- Elementary red-black BST operations

Insertion

- Mathematical analysis
- Historical context

Basic strategy: Maintain 1-1 correspondence with 2-3 trees

- During internal operations, maintain:
 - symmetric order.
 - perfect black balance.
- But we might violate color invariants. For example:
 - Right-leaning red link.
 - Two red children (temporary 4-node).
 - Left-left red (temporary 4-node).
 - Left-right red (temporary 4-node).
- To restore color invariant we will be performing rotations and color flips.

Insertion into a LLRB

- Do standard BST insertion and color the new link red.
- Repeat until color invariants restored:
 - Both children red? Flip colors.
 - Right link red? Rotate left.
 - Two left reds in a row? Rotate right.

Red-black BST construction demo

Implementation

Only three cases:

- Right child red; left child black: rotate left.
- Left child red; left-left grandchild red: rotate right.
- Both children red: flip colors.

```
// insert the key-value pair in the subtree rooted at h
private Node put(Node h, Key key, Value val) {
    if (h == null) return new Node(key, val, RED, 1);
    int cmp = key.compareTo(h.key);
    if
            (cmp < 0) h.left = put(h.left, key, val);</pre>
    else if (cmp > 0) h.right = put(h.right, key, val);
                      h.val
    else
                              = val;
    // fix-up any right-leaning links
    if (isRed(h.right) && !isRed(h.left))
                                                h = rotateLeft(h);
    if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
    if (isRed(h.left) && isRed(h.right))
                                                flipColors(h);
    h.size = size(h.left) + size(h.right) + 1;
    return h;
}
```


Visualization of insertion into a LLRB tree

> 255 insertions in ascending order.

Visualization of insertion into a LLRB tree

> 255 insertions in descending order.

Visualization of insertion into a LLRB tree

> 255 insertions in random order.

Lecture 20: Left-leaning Red-Black Trees

- Introduction
- Elementary red-black BST operations
- Insertion
- Mathematical analysis
- Historical context

Balance in LLRB trees

- Height of LLRB trees is $\leq 2 \log n$ in the worst case.
- Worst case is a 2-3 tree that is all 2-nodes except that the left-most path is made up of 3-nodes.
- All ordered operations (min, max, floor, ceiling) etc. are also O(log n).

Summary for dictionary/symbol table operations

	Worst case			Average case		
	Search	Insert	Delete	Search	Insert	Delete
Sequential search (unordered	п	п	п	n/2	п	n/2
Binary search (ordered array)	log n	п	n	log n	n/2	n/2
BST	п	п	п	1.39 log <i>n</i>	1.39 log <i>n</i>	\sqrt{n}
2-3 search tree	$c\log n$	c log n	c log n	c log n	c log n	$c\log n$
Red-black BSTs	2 log <i>n</i>	2 log <i>n</i>	2 log <i>n</i>	1 log <i>n</i>	1 log <i>n</i>	1 log <i>n</i>

Lecture 20: Left-leaning Red-Black Trees

- Introduction
- Elementary red-black BST operations
- Insertion
- Mathematical analysis
- Historical context

Red-black trees

- A dichromatic framework for balanced trees. [Guibas and Sedgewick, 1978].
- Why red-black? Xerox PARC had a laser printer and red and black had the best contrast...
- Left-leaning red-black trees [Sedgewick, 2008]
 - Inspired by difficulties in proper implementation of RB BSTs.
- RB BSTs have been involved in lawsuit because of improper implementation.

Balanced trees in the wild

- Red-black trees are widely used as system dictionaries.
 - e.g., Java: java.util.TreeMap and java.util.TreeSet.
- Other balanced BSTs: AVL, splay, randomized.
- 2-3 search trees are a subset of b-trees.
 - See recommended textbook for more.
 - B-trees are widely used for file systems and databases.

Readings:

- Recommended Textbook: Chapter 3.3 (Pages 424-447)
- Website:
 - https://algs4.cs.princeton.edu/33balanced/
- Visualization:
 - https://www.cs.usfca.edu/~galles/visualization/BTree.html (for 2-3 trees)
 - <u>https://algs4.cs.princeton.edu/GrowingTree/</u> (for LLRB trees)

Practice Problems:

- > 3.2.1-3.2.13, 3.3.2-3.3.5, 3.3.9-3.3.22
- In-class worksheet