
CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

19: Binary Search Trees

SEARCHING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki 
she/her/hers

BINARY SEARCH TREES

Definitions

▸ Binary Search Tree: A binary tree in symmetric order.

▸ Symmetric order: Each node has a key, and every node’s
key is:

▸ Larger than all keys in its left subtree.

▸ Smaller than all keys in its right subtree.

▸ Our textbook uses BSTs to implement dictionaries,
therefore each node holds a key-value pair. Other
implementations hold only a key.

2

BINARY SEARCH TREES

Differences between heaps and BSTs

*: when are BSTs used to implement dictionaries.

3

Heap BST

Used to implement Priority queues Dictionaries

Supported operations Insert, delete max insert, search, delete,
ordered operations

What is inserted Keys Key-value pairs

Underlying data structure (Resizing) array Linked nodes

Tree shape Complete binary tree Depends on data

Ordering of keys Heap-ordered Symmetrically-ordered

Duplicate keys allowed? Yes No*

BINARY SEARCH TREES

BST representation of dictionaries

4

▸ We will use an inner class Node that is composed by:

▸ A Key that is comparable and a Value

▸ A reference to the root nodes of the left (smaller keys)
and right (larger keys) subtrees.

▸ Potentially, the total number of nodes in the subtree that
has root this node.

▸ A BST has a reference to a Node root.

BINARY SEARCH TREES

BST and Node implementation

5

public class BST<Key extends Comparable<Key>, Value> {
 private Node root; // root of BST

 private class Node {
 private Key key; // sorted by key
 private Value val; // associated value
 private Node left, right; // roots of left and right subtrees
 private int size; // #nodes in subtree rooted at this

 public Node(Key key, Value val, int size) {
 this.key = key;
 this.val = val;
 this.size = size;
 }
 }

BINARY SEARCH TREES

Search for a key

6

▸ If less than key in node go to left subtree.

▸ If greater than key in node go to right subtree.

▸ If given key and key at examined node are equal, search hit.

▸ Return value corresponding to given key, or null if no such key.

▸ In other implementations, you return the last node you
reached.

▸ Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

Search example

7

BINARY SEARCH TREES

Search - iterative implementation

8

▸ public Value get(Key key) {  
 Node x = root;  
 while (x != null) {  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 x = x.left;  
 else if (cmp > 0)  
 x = x.right;  
 else if (cmp == 0)  
 return x.val;  
 }  
 return null;  
}

BINARY SEARCH TREES

Search - recursive implementation

9

‣ public Value get(Key key) {  
 return get(root, key);  
}

‣ private Value get(Node x, Key key) {  
 if (x == null)  
 return null;  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 return get(x.left, key);  
 else if (cmp > 0)  
 return get(x.right, key);  
 else  
 return x.val;  
}

BINARY SEARCH TREES

Insert

10

▸ If less than key in node go left.

▸ If greater than key in node go right.

▸ If null, insert.

▸ If already exists, update value.

▸ Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

Insert example

11

BINARY SEARCH TREES

Insert

12

▸ public void put(Key key, Value val) {  
 root = put(root, key, val);  
}  
private Node put(Node x, Key key, Value val) {  
 if (x == null)  
 return new Node(key, val, 1);  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 x.left = put(x.left, key, val);  
 else if (cmp > 0)  
 x.right = put(x.right, key, val);  
 else  
 x.val = val;  
 x.size = 1 + size(x.left) + size(x.right);  
 return x;  
}

13

BINARY SEARCH TREES

Tree shape

14

▸ The same set of keys can result to different BSTs based on
their order of insertion.

▸ Number of compares for search/insert is equal to depth of
node +1.

BINARY SEARCH TREES

BSTs mathematical analysis

15

▸ If distinct keys are inserted into a BST in random order, the
expected number of compares of search/insert is .

▸ If distinct keys are inserted into a BST in random order, the
expected height of tree is . [Reed, 2003].

▸ Worst case height is but highly unlikely.

▸ Keys would have to come (reversely) sorted!

▸ All ordered operations in a dictionary implemented with a BST
depend on the height of the BST.

n
O(log n)

n
O(log n)

n

BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf

16

▸ Simply delete node.

▸ Example: delete 52 locates a node which is a leaf and removes it.

BINARY SEARCH TREES

Hibbard deletion: Delete node with one child

17

▸ Delete node and replace it with its child.

▸ Example: delete 70 locates a node which has one child and replaces it with the child.

BINARY SEARCH TREES

Hibbard deletion: Delete node with two children

18

▸ Delete node and replace it with successor (node with smallest of the larger keys).
Move successor’s child (if any) where successor was.

▸ Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

https://visualgo.net/en/bst

BINARY SEARCH TREES 19

 public void delete(Key key) {
 root = delete(root, key);
 }

 private Node delete(Node x, Key key) {
 if (x == null) return null;

 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = delete(x.left, key);
 else if (cmp > 0)  
 x.right = delete(x.right, key);
 else {
 if (x.right == null)
 return x.left;
 if (x.left == null)
 return x.right;
 Node t = x; //replace with successor
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.size = size(x.left) + size(x.right) + 1;
 return x;
 }

 /**
 * Removes the smallest key and associated value from the symbol table.
 *
 * @throws NoSuchElementException if the symbol table is empty
 */
 public void deleteMin() {
 if (isEmpty()) throw new NoSuchElementException();
 root = deleteMin(root);
 }

 private Node deleteMin(Node x) {
 if (x.left == null) return x.right;
 x.left = deleteMin(x.left);
 x.size = size(x.left) + size(x.right) + 1;
 return x;
 }

 private Node min(Node x) {
 if (x.left == null) return x;
 else return min(x.left);
 }

BINARY SEARCH TREES

Practice Time

▸ Delete the node 21 following Hibbard’s deletion

20

BINARY SEARCH TREES

Answer

▸ Delete the node 21 following Hibbard’s deletion

21

BINARY SEARCH TREES

Hibbard’s deletion

22

▸ Unsatisfactory solution. If we were to perform many insertions and deletions
the BST ends up being not symmetric and skewed to the left.

▸ Extremely complicated analysis, but average cost of deletion ends up
being . Let’s simplify things by saying it stays .

▸ No one has proven that alternating between the predecessor and
successor will fix this.

▸ Hibbard devised the algorithm in 1962. Still no algorithm for efficient
deletion in Binary Search Trees!

▸ Overall, BSTs can have worst-case for search, insert, and delete. We
want to do better (see future lectures).

n O(log n)

O(n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: Binary Search Trees

▸ Binary Search Trees

23

2-3 SEARCH TREES

The story so far

▸ The symbol table/dictionary is a fundamental data type.

▸ Naive implementations (arrays/linked lists sorted or
unsorted) are way too slow.

▸ Binary search trees work well in the average case, but can
grow too tall and imbalanced in the worst case.

▸ Question of the day: How to balance search trees?

24

2-3 SEARCH TREES

Order of growth for symbol table/dictionary operations

25

Worst case Average case

Search Insert Delete Search Insert Delete

BST

Goal

n n n log n log n n

log n log n log nlog nlog nlog n

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook: Chapters 3.2 (Pages 396–414)

▸ Website:

▸ https://algs4.cs.princeton.edu/32bst/

▸ Visualization:

▸ https://visualgo.net/en/bst

26

Practice Problems:

▸ In-class worksheet

https://algs4.cs.princeton.edu/32bst/
https://visualgo.net/en/bst
https://cs.pomona.edu/classes/cs62/worksheets/Lecture19_worksheet.pdf

