£35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

19: Binary Search Trees

"4\ Alexandra Papoutsaki
@ ' shelher/hers




parent of Aand R

BINARY SEARCH TREES left link 3 2
1 ()
0 N value
Definitions C assocated
! \
keys smaller than € keys Inr‘ger than E

» Binary Search Tree: A binary tree in symmetric order.

» Symmetric order: Each node has a key, and every node’s
key is:

» Larger than all keys in its left subtree.
» Smaller than all keys in its right subtree.

» Our textbook uses BSTs to implement dictionaries,
therefore each node holds a key-value pair. Other
implementations hold only a key.



BINARY SEARCH TREES

Differences between heaps and BSTs

Heap BST
Used to implement Priority queues Dictionaries
Supported operations Insert, delete max ir::l:'r :za;;:r:teilcf::'
What is inserted Keys Key-value pairs
Underlying data structure (Resizing) array Linked nodes
Tree shape Complete binary tree Depends on data
Ordering of keys Heap-ordered Symmetrically-ordered
Duplicate keys allowed? Yes No*

*: when are BSTs used to implement dictionaries.



BINARY SEARCH TREES 4
BST representation of dictionaries

» We will use an inner class Node that is composed by:
» A Key thatis comparable and a Value

» A reference to the root nodes of the left (smaller keys)
and right (larger keys) subtrees.

» Potentially, the total number of nodes in the subtree that
has root this node.

» A BST has a reference to a Node root.



BINARY SEARCH TREES 5

BST and Node implementation

public class BST<Key extends Comparable<Key>, Value> {
private Node root; // root of BST

private class Node {

private Key key; // sorted by key

private Value val; // associated value

private Node left, right; // roots of left and right subtrees
private int size; // #nodes 1n subtree rooted at this

public Node(Key key, Value val, int size) {
this.key = key;
this.val = val;
this.s1ze = size;



parent OfA and R

BINARY SEARCH TREES left link ) )

(S)
ofE T
9 T value
G m associated
with R

! \

Search for a key

keys smaller than € keys larger than E

» If less than key in node go to left subtree.
» If greater than key in node go to right subtree.
» If given key and key at examined node are equal, search hit.

» Return value corresponding to given key, or null if no such key.

» In other implementations, you return the last node you
reached.

» Number of compares is equal to the depth of the node + 1.



BINARY SEARCH TREES

Search example

successful search for R unsuccessful searchfor T

R 1s less than S

so look to the left T is greater than S

black nodes could so look to the right

match the search key

®R =R

gray nodes cannot 0 | \
R is greater than E match the search key Vo T is less tharn X
so look to the right so look to the left

link is null
so T is not 1n tree

(search miss)

®\ found R
(search hit)
so return value

Successful (left) and unsuccessful (right ) search in a BST



BINARY SEARCH TREES

Search - iterative implementation

» public Value get(Key key) {
Node x = root;
while (x !'= null) {
int cmp = key.compareTo(x.key);
1f (cmp < 0)
X = X.left;
else 1f (cmp > 0)
X = X.right;
else 1f (cmp == 0)
return x.val;

¥

return null;



BINARY SEARCH TREES

Search - recursive implementation

" public Value get(Key key) {
return get(root, key);

¥

" private Value get(Node x, Key key) {
1f (X == null)
return null;
int cmp = key.compareTo(x.key);
1f (cmp < @)
return get(x.left, key);
else 1f (cmp > @)
return get(x.right, key);
else
return x.val;



BINARY SEARCH TREES

Insert

» If less than key in node go left.

parent OfA and R

key
left link \ S)
ofE T e
Q N~ value
@ 0 associated
with R
! X
keys smaller than € keys larger than E

» If greater than key in node go right.

» If null, insert.

» If already exists, update value.

» Number of compares is equal to the depth of the node + 1.



BINARY SEARCH TREES

11

Insert example

inserting L

search for L ends L ’
at this null link \

reset links and
increment counts -
on the way up

Insertion into a BST




BINARY SEARCH TREES

Insert

» public void put(Key key, Value val) {
root = put(root, key, val);
3
private Node put(Node x, Key key, Value val) {
1f (X == null)
return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
1f (cmp < 0)
x.left = put(x.left, key, val);
else 1f (cmp > 0)
x.right = put(x.right, key, val);
else
x.val = val;
x.s1ze = 1 + size(x.left) + size(x.right);
return Xx;

12



A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREE DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu



BINARY SEARCH TREES 14
Tree shape

» The same set of keys can result to different BSTs based on
their order of insertion.

» Number of compares for search/insert is equal to depth of
node +1.

typical case

best case 0
Cl (S)
(A) (B} (R)(X)

worst case



BINARY SEARCH TREES 15
BSTs mathematical analysis

» If n distinct keys are inserted into a BST in random order, the

expected number of compares of search/insert is O(log n).

» If n distinct keys are inserted into a BST in random order, the
expected height of tree is O(logn). [Reed, 2003].

» Worst case height is n but highly unlikely.
» Keys would have to come (reversely) sorted!

» All ordered operations in a dictionary implemented with a BST
depend on the height of the BST.



BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf

» Simply delete node.

» Example: delete 52 locates a node which is a leaf and removes it.

16



BINARY SEARCH TREES

Hibbard deletion: Delete node with one child

» Delete node and replace it with its child.

» Example: delete 70 locates a node which has one child and replaces it with the child.

17



BINARY SEARCH TREES

Hibbard deletion: Delete node with two children

» Delete node and replace it with successor (node with smallest of the larger keys).

Move successor’s child (if any) where successor was.

» Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

18


https://visualgo.net/en/bst

VA ZS

BINARY SEARCH TREES * Removes the smallest key and associated value from thL?symbo

*
* @throws NoSuchElementException if the symbol table is empty
*/

public void deleteMin() {

. . if (isEmpty()) throw new NoSuchElementException();
DUbllc VOld delete(Key ke}l) { root = deleteMin(root);

root = delete(root, key); }

} private Node deleteMin(Node x) {
if (x.left == null) return x.right;
: x.left deleteMin(x.left);
pr"l.VClte NOde delete(NOde X, Key key) { X.size = size(x.left) + size(x.right) + 1;

1f (X == null) return null; return x;

int cmp = key.compareTo(x.key);
1f (cmp < 0)
x.left = delete(x.left, key);
else if (cmp > 0)
x.right = delete(x.right, key); | _
else { pr1v§1f:e Node mJ.r:liNode x) { .
if (x.left null) return x;
1f (Xr"l.ght == null) else return min(x.left);
return x.left;
1f (x.left == null)
return x.right;
Node t = x; //replace with successor
X = min(t.right);
x.right = deleteMin(t.right);
x.left = t.left;
ks
Xx.s1ze = size(x.left) + size(x.right) + 1;
return Xx;



BINARY SEARCH TREES
Practice Time

» Delete the node 21 following Hibbard'’s deletion

20



BINARY SEARCH TREES
Answer

» Delete the node 21 following Hibbard'’s deletion

21



BINARY SEARCH TREES 22

Hibbard’s deletion

» Unsatisfactory solution. If we were to perform many insertions and deletions
the BST ends up being not symmetric and skewed to the left.

» Extremely complicated analysis, but average cost of deletion ends up
being \/; Let’s simplify things by saying it stays O(log n).

» No one has proven that alternating between the predecessor and
successor will fix this.

» Hibbard devised the algorithm in 1962. Still no algorithm for efficient
deletion in Binary Search Trees!

» Overall, BSTs can have O(n) worst-case for search, insert, and delete. We
want to do better (see future lectures).



TODAY'S LECTURE IN A NUTSHELL

23

Lecture 19: Binary Search Trees

» Binary Search Trees



2-3 SEARCH TREES 24

The story so far

» The symbol table/dictionary is a fundamental data type.

» Naive implementations (arrays/linked lists sorted or
unsorted) are way too slow.

» Binary search trees work well in the average case, but can
grow too tall and imbalanced in the worst case.

» Question of the day: How to balance search trees?



2-3 SEARCH TREES

Order of growth for symbol table/dictionary operations

Worst case Average case
Search Insert Delete Search Insert Delete
BST
n n n logn logn \/Z
con logn logn logn logn logn logn
Oa

25



ASSIGNED READINGS AND PRACTICE PROBLEMS

26

Readings:

» Recommended Textbook: Chapters 3.2 (Pages 396-414)

» Website:

» https://algs4.cs.princeton.edu/32bst/

» Visualization:

» https://visualgo.net/en/bst

Practice Problems:

» In-class worksheet



https://algs4.cs.princeton.edu/32bst/
https://visualgo.net/en/bst
https://cs.pomona.edu/classes/cs62/worksheets/Lecture19_worksheet.pdf

