Node representation

```java
private class Node {
    private Key key; // sorted by key
    private Value val; // associated data
    private Node left, right; // left and right subtrees
    private int size; // number of nodes in subtree

    public Node(Key key, Value val, int size) {
        this.key = key;
        this.val = val;
        this.size = size;
    }
}
```
Search - iterative implementation

```java
public Value get(Key key) {
    Node x = root;
    while (x != null) {
        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x = x.left;
        else if (cmp > 0)
            x = x.right;
        else if (cmp == 0)
            return x.val;
    }
    return null;
}
```
Search - recursive implementation

```java
public Value get(Key key) {
    return get(root, key);
}

private Value get(Node x, Key key) {
    if (x == null)
        return null;

    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        return get(x.left, key);
    else if (cmp > 0)
        return get(x.right, key);
    else
        return x.val;
}
```
Insert

- **public** void put(Key key, Value val) {

 root = put(root, key, val);

}

private Node put(Node x, Key key, Value val) {

 if (x == null)
 return new Node(key, val, 1);

 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = put(x.left, key, val);
 else if (cmp > 0)
 x.right = put(x.right, key, val);
 else
 x.val = val;

 x.size = 1 + size(x.left) + size(x.right);

 return x;

}
Floor

public Key floor(Key key) {
 Node x = floor(root, key);
 if (x == null)
 return null;
 else
 return x.key;
}

private Node floor(Node x, Key key) {
 if (x == null)
 return null;
 int cmp = key.compareTo(x.key);
 if (cmp == 0)
 return x;
 if (cmp < 0)
 return floor(x.left, key);
 Node t = floor(x.right, key);
 if (t != null)
 return t;
 else
 return x;
}
Rank

- **Rank**: How many keys < query key k.

```java
public int rank(Key key) {
    return rank(key, root);
}

// Number of keys in the subtree less than key.
private int rank(Key key, Node x) {
    if (x == null)
        return 0;
    int cmp = key.compareTo(x.key);
    if (cmp < 0)
        return rank(key, x.left);
    else if (cmp > 0)
        return 1 + size(x.left) + rank(key, x.right);
    else
        return size(x.left);
}
```
public void delete(Key key) {
 root = delete(root, key);
}

private Node delete(Node x, Key key) {
 if (x == null) return null;
 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = delete(x.left, key);
 else if (cmp > 0)
 x.right = delete(x.right, key);
 else {
 if (x.right == null)
 return x.left;
 if (x.left == null)
 return x.right;
 Node t = x; // replace with successor
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.size = size(x.left) + size(x.right) + 1;
 return x;
}
Today: Binary Search Trees

1. Basics
2. Search & Insert
3. "Ordered" Operations
4. Deletion

1. BST Basics

A Binary Search Tree (BST) is a binary tree in which every node's left subtree contains smaller keys, right subtree contains larger keys.
- Node keys sorted small to large according to in-order traversal.
 - Also known as symmetric order.

 Main feature: very fast binary search!
 \[\text{comparisons} \approx \text{tree height, } n. \]

Trees vs. Heaps:

- **(Max) Heap**
 - \(\uparrow \) bigger
 - \text{ordering:} \begin{array}{c}
 \text{operations:} \\
 \text{insert-max} \\
 \text{delete-max} \\
 \text{Search slow} \end{array}
 - \text{tree shape:} \text{flexible insert means tree stays complete}
 - \text{representation:} \text{array OK}

- **BST**
 - \(\Rightarrow \) bigger
 - \text{search, insert, delete}
 - \text{min, max, floor, ceiling, rank}
 - \text{tree shape:} \Rightarrow \text{can lead to weird tree shape.}
 - \text{representation:} \text{linked nodes}

BST Nodes:

- key (comparable)
- value (data)
- left, right children
- size (\# of descendants)
BST Search:

1) Start at root.

2) If target key < current node key, go left.
 - target key > current node, go right.

3) Repeat step 2 until we find target, or reach an empty leaf.

Runtime: $O(h)$

\Rightarrow # of comparisons required to locate target (or return null).

BST Insert:

1) Search for the target key.

2) If you reach an empty leaf, add the new node.
 - (If target key is already in BST, update value).

Runtime: $O(h)$

What's the real runtime?

- Depends on tree shape.
- Insert n keys in random order:
 - $2 \ln(n)$ compares/insertion (expected)
 - $4.3 \ln(n)$ tree height.

- Worst-case:
 - $O(n)$ compares/insert
Inserting BST elements in random order \(\approx \) quicksort

Example: 16, 4, 11, 3, 13, 1, 9

building a BST.

Quicksort # pivots
\[\text{Expected BST height} = 2 \ln(n) \]

3. "Ordered" Operations

- find min, find max.
 (go all the way to the left/right).

- find floor/ceiling of a key. \(f_k \)

 floor: what's the largest key of size at most \(k \)?
 ceiling: \(\text{"- smallest key "} \) - last \(k \)?

Bst Floor/Ceiling:

1) search for \(k \)

2) if \(k \) isn't in our BST, find \(k \)'s predecessor/successor.

\[f_{\text{floor}}(16) \]
- search
 - Last parent 15
 - floor (10)
BST Rank: number of nodes with key smaller than target.

\[\text{rank}(k) \]

1. search for target \(k \)
2. on a "right turn":
 - add +1 to rank for subtree root
 - add size of left subtree to rank

BST Deletion:

1. Search for \(k \), our target
2. Delete \(k \) (3 cases):
 i) \(k \) is a leaf: remove
 ii) \(k \) has one child: replace \(k \) w/ child
 \[\Rightarrow \]
 \[\text{replace with child} \]
 iii) \(k \) has two children:
 - find \(k \)'s successor
 - replace \(k \) with successor
 - (recursively) delete \(k \)'s successor