CS062 DATA STRUCTURES AND ADVANCED PROGRAMMING

17: Dictionaries

Alexandra Papoutsaki she/her/hers

Lecture 17: Dictionaries

Dictionaries

Dictionaries

- Also known as: symbol tables, maps, indices, associative arrays.
- Key-value pair abstractions that support two operations:
 - Insert a key-value pair.
 - Given a key, search for the corresponding value.
- Supported either with built-in or external libraries by the majority of programming languages.

Basic dictionary API

- > public class Dictionary <Key extends Comparable<Key>, Value>
- Dictionary(): create an empty dictionary. By convention, values are not null.
- void put(Key key, Value val): insert key-value pair.
 - Overwrites old value with new value if key already exists.
- Value get(Key key): return value associated with key.
 - Returns null if key not present.
- boolean contains(Key key): is there a value associated with key?
- > Iterable keys(): all the keys in the dictionary.
- void delete(Key key): delete key and associated value.
- boolean isEmpty(): is the dictionary empty?
- int size(): number of key-value pairs.

Ordered dictionaries

	keys	values
min()→	-09:00:00	Chicago
	09:00:03	Phoenix
	09:00:13	Houston
get(09:00:13)	09:00:59	Chicago
	09:01:10	Houston
floor(09:05:00)→	-09:03:13	Chicago
	09:10:11	Seattle
select(7)→	-09:10:25	Seattle
	09:14:25	Phoenix
	09:19:32	Chicago
	09:19:46	Chicago
keys(09:15:00, 09:25:00)→	09:21:05	Chicago
	09:22:43	Seattle
	09:22:54	Seattle
	09:25:52	Chicago
ceiling(09:30:00) →	09:35:21	Chicago
	09:36:14	Seattle
max()→	09:37:44	Phoenix
size(09:15:00, 09:25:00) is 5	5	

.

size(09:15:00, 09:25:00) is 5 rank(09:10:25) is 7

Ordered dictionary API

- Key min(): smallest key.
- Key max(): largest key.
- ▶ Key floor(Key key): largest key less than or equal to given key.
- ▶ Key ceiling(Key key): smallest key greater than or equal to given key.
- int rank(Key key): number of keys less that given key.
- Key select(int k): key with rank k.
- Iterable keys(): all keys in dictionary in sorted order.
- Iterable keys(int lo, int hi): keys in [lo, ..., hi] in sorted order.

Printed dictionaries are all around us

- Dictionary: key = word, value = definition.
- Encyclopedia: key = term, value = article.
- Phonebook: key = name, value = phone number.
- Math table: key = math functions and input, value = function output.
- Unsupported operations:
 - Add a new key and associated value.
 - Remove a given key and associated value.
 - Change value associated with a given key.

Readings:

- Recommended Textbook: Chapters 3.1 (Pages 362–386)
- Website:
 - https://algs4.cs.princeton.edu/31elementary/

Practice Problems:

> 3.1.1-3.1.6