# **CS062** DATA STRUCTURES AND ADVANCED PROGRAMMING

## 16: Priority Queues and Heapsort



Alexandra Papoutsaki she/her/hers Lecture 16: Priority Queues and Heapsort

- Priority Queue
- Heapsort

## Priority Queue ADT

- Two operations:
  - Delete the maximum



- Applications: load balancing and interruption handling in OS, Huffman codes for compression, A\* search for AI, Dijkstra's and Prim's algorithm for graph search, etc.
- How can we implement a priority queue efficiently?



**Option 1: Unordered array** 

- The lazy approach where we defer doing work (deleting the maximum) until necessary.
- Insert is O(1) (will be implemented as push in stacks) and assume we have the space in the array.
- Delete maximum is O(n) (have to traverse the entire array to find the maximum element and exchange it with the last element).

#### **PRIORITY QUEUE**

}

```
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
   private Key[] pq; // elements
   private int n; // number of elements
   // set initial size of heap to hold size elements
   public UnorderedArrayMaxPQ(int capacity) {
       pq = (Key[]) new Comparable[capacity];
       n = 0;
    }
   public boolean isEmpty() { return n == 0; }
   public int size()
                     { return n;
                                              }
   public void insert(Key x) { pq[n++] = x; }
   public Key delMax() {
       int max = 0;
       for (int i = 1; i < n; i++){
           if (pq[max].compareTo(pq[i]) < 0) {</pre>
                max = i;
           }
       }
       Key temp = pq[max];
       pq[max] = pq[n-1];
       pq[n-1] = temp;
       return pq[--n];
    }
```

**Practice Time** 

- Given an empty array of capacity 10, perform the following operations in a priority queue based on an unordered array (lazy approach):
- 1. Insert P 7. Insert M
- 2. Insert Q 8. Delete max
- 3. Insert E 9. Insert P
- 4. Delete max 10. Insert L
- 5. Insert X
- 6. Insert A

 $\bigcirc$ 

123456789

- 11. Insert E
- 12. Delete max



**Option 2: Ordered array** 

- The eager approach where we do the work (keeping the array sorted) up front to make later operations efficient.
- Insert is O(n) (we have to find the index to insert and shift elements to perform insertion).
- Delete maximum is O(1) (just take the last element which will be the maximum).

#### **PRIORITY QUEUE**

```
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
   private Key[] pq; // elements
   private int n; // number of elements
   // set initial size of heap to hold size elements
   public OrderedArrayMaxPQ(int capacity) {
       pq = (Key[]) (new Comparable[capacity]);
       n = 0;
   }
   public boolean isEmpty() { return n == 0; }
   public int size() { return n;
   public Key delMax() { return pq[--n]; }
   public void insert(Key key) {
       int i = n-1;
       while (i >= 0 && key.compareTo(pq[i]) < 0) {</pre>
           pq[i+1] = pq[i];
           i--;
       }
       pq[i+1] = key;
       n++;
   }
}
```

**Practice Time** 

- Given an empty array of capacity 10, perform the following operations in a priority queue based on an ordered array (eager approach):
- 1. Insert P 7. Insert M
- 8. Delete max 2. Insert Q
- 3. Insert E 9. Insert P
- 4. Delete max 10. Insert L
- 5. Insert X
- 6. Insert A

- 11. Insert E
- 12. Delete max





**Option 3: Binary heap** 

- Will allow us to both insert and delete max in O(log n) running time.
- There is no way to implement a priority queue in such a way that insert and delete max can be achieved in O(1) running time.
- Priority queues are synonyms to binary heaps.

## Practice Time

- Given an empty binary heap that represents a priority queue, perform the following operations:
- 1. Insert P7. Insert M
- 2. Insert Q 8. Delete max
- 3. Insert E9. Insert P
- 4. Delete max 10. Insert L
- 5. Insert X
- 6. Insert A

- 11. Insert E
- 12. Delete max

#### Answer





Lecture 16: Priority Queues and Heapsort

- Priority Queue
- Heapsort

Basic plan for heap sort

- Use a priority queue to develop a sorting method that works in two steps:
- 1) Heap construction: build a binary heap with all n keys that need to be sorted.
- Sortdown: repeatedly remove and return the maximum key.

## O(n log n) Heap construction

- Insert n elements, one by one, swim up to their appropriate position.
- We can do better!
- Key insight: After sink(a,k,n) completes, the subtree rooted at k is a heap.

```
private static void sink(Comparable[] pq, int k, int n) {
    while (2*k <= n) {
        int j = 2*k;
        if (j < n && pq[j-1].compareTo(pq[j]) < 0){
            j++
        }
        if (pq[k-1].compareTo(pq[j-1]) >= 0){
            break;
        }
        Comparable temp = pq[k-1];
        pq[k-1] = pq[j-1];
        pq[j-1] = temp;
        k = j;
    }
}
```

#### O(n) Heap construction

- Insert all nodes as is in indices 1 to n. We will turn this binary tree into a heap.
- Ignore all leaves (indices n/2+1,...,n). Sink each internal node
- for(int k = n/2; k >= 1; k--)
  sink(a, k, n);



#### **Practice Time**

Run the first step of heapsort, heap construction, on the array [2,9,7,6,5,8].

#### Answer: Heap construction



#### Sortdown

- Remove the maximum, one at a time, but leave in array instead of nulling out.
- while(n>1){
   exch(a, 1, n--);
   sink(a, 1, n);
  }
- Key insight: After each iteration the array consists of a heap-ordered subarray followed by a sub-array in final order.

#### HEAPSORT

Sortdown



22

#### Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.



#### **Practice Time**

Given the heap you constructed before, run the second step of heapsort, sortdown, to sort the array [2,9,7,6,5,8]. Answer: Sortdown



#### Heapsort analysis

- Heap construction (the fast version) makes O(n) exchanges and O(n) compares.
- Sortdown and therefore the entire heap sort  $O(n \log n)$  exchanges and compares.
- In-place sorting algorithm with O(n log n) worst-case!
- Remember:
  - mergesort: not in place, requires linear extra space.
  - > quicksort: quadratic time in worst case.
- > Heapsort is optimal both for time and space in terms of Big-O, but:
  - Inner loop longer than quick sort.
  - > Poor use of cache because it accesses memory in non-sequential manner, jumping around.
  - Not stable.

Sorting: Everything you need to remember about it!

|   | Which Sort | In<br>place | Stable | Best         | Average       | Worst         | Remarks                                                    |
|---|------------|-------------|--------|--------------|---------------|---------------|------------------------------------------------------------|
|   | Selection  | Х           |        | $O(n^2)$     | $O(n^2)$      | $O(n^2)$      | n exchanges                                                |
|   | Insertion  | Х           | Х      | O(n)         | $O(n^2)$      | $O(n^2)$      | Use for small arrays or partially ordered                  |
|   | Merge      |             | Х      | $O(n\log n)$ | $O(n\log n)$  | $O(n \log n)$ | Guaranteed<br>performance; stable                          |
|   | Quick      | Х           |        | $O(n\log n)$ | $O(n \log n)$ | $O(n^2)$      | <i>n</i> log <i>n</i> probabilistic<br>guarantee; fastest! |
| - | Неар       | Х           |        | $O(n\log n)$ | $O(n \log n)$ | $O(n \log n)$ | Guaranteed<br>performance; in place                        |

Lecture 16: Priority Queues and Heapsort

- Priority Queue
- Heapsort

## Readings:

- Recommended Textbook:
  - Chapter 2.4 (Pages 308-327), 2.5 (336-344)
- Website:
  - Priority Queues: <u>https://algs4.cs.princeton.edu/24pq/</u>
- Visualization:
  - Create (compare the n and nlogn approaches) and heapsort: <a href="https://visualgo.net/en/heap">https://visualgo.net/en/heap</a>

#### **Practice Problems:**

- In-class worksheet
- > 2.4.1-2.4.11. Also try some creative problems.