£35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

16: Priority Queues and Heapsort

o \ Alexandra Papoutsak
@& ' shelher/hers

TODAY'S LECTURE IN A NUTSHELL

Lecture 16: Priority Queues and Heapsort

» Priority Queue

» Heapsort

Some slides adopted from Algorithms 4th Edition or COS226

PRIORITY QUEUE

Priority Queue ADT

» Two operations:

» Delete the maximum

» Insert

» Applications: load balancing and interruption handling in
OS, Huffman codes for compression, A* search for All,

Dijkstra’s and Prim's algorithm for graph search, etc.

» How can we implement a priority queue efficiently?

PRIORITY QUEUE

Option 1: Unordered array

» The lazy approach where we defer doing work (deleting
the maximum) until necessary.

» Insertis O(1) (will be implemented as push in stacks) and

assume we have the space in the array.

» Delete maximum is O(n) (have to traverse the entire array
to find the maximum element and exchange it with the last

element).

PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public UnorderedArrayMaxPQ(int capacity) {

pq = (Key[]) new Comparable[capacity];

n = 0;
¥

public boolean i1sEmpty() { return n == 0;
public int size() { return n; }
public void insert(Key x) { pgln++] = x; }

public Key delMax() {
int max = 0;
for (int 1 =1; 1 < n; 1++){
1f (pg[max].compareTo(pg[i]) < @) {
max = 1;
Iy

}
Key temp = pqg[max];

pglmax] = pql[n-1];
pqln-1] = temp;

return pql--n];

PRIORITY QUEUE

0 £ X 3 4 56 F 8 9
Practice Time

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
unordered array (lazy approach):

1. Insert P /. Insert M
2. Insert Q 8. Delete max
3. InsertE 9. Insert P
4. Delete max 10. Insert L
5. Insert X 11. Insert E

Insert A 12. Delete max

.

PRIORITY QUEUE

Answer

p

0 L R 3 4 s 6 S
PlQ

0 4L X 3 4 S 6 S 9
PIQ|E

0 L X 3 4 56 S 9
P|E|IBL

0 4L X 3 4 56 S 9
PLE X

0 L X 3 4 56 g 9
PLE XA

0 41 X 3 4 56 S 9
PLEDA A M

0 4L R 3 4 56 g 9
PlEWMIAIX

0O 4L X 3 4 5 6 S 9
PLEMALP

0 4L X 3 4 56 S 9
PlEUMIAIYIL

0 4L X 3 4 56 S 9
PlEMAIPILE

0O 4 R 3 4 5 6 S 9
ElEWMIAIPIL

0 L X 3 4 56 S 9

(mserdt |2

imsert &

insert £

delete -max -6
imser+ 9(

imser+ A

imser+ M

delete-mosx X<
P

inser+

insert |

—

imsert &
delete-max—=P

PRIORITY QUEUE
Option 2: Ordered array

» The eager approach where we do the work (keeping the
array sorted) up front to make later operations efficient.

» Insertis O(n) (we have to find the index to insert and shift
elements to perform insertion).

» Delete maximum is O(1) (just take the last element which
will be the maximum).

PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public OrderedArrayMaxPQ(int capacity) {

pq = (Key[]) (new Comparable[capacity]);

n=0;

public boolean isEmpty() { return n == 0; }
public int size() { return n; }
public Key delMax() { return pq[--n]; }

public void insert(Key key) {

int 1 = n-1;

while (1 >= 0 && key.compareTo(pq[i]) < @) {
pali+1] = pql[il;
1--3

}

pal[i+l] = key;

N++;

PRIORITY QUEUE

Practice Time

0 £ X 3 4 56 F 8 9

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
ordered array (eager approach):

1.

o~ Ol

AW N

Insert P
Insert Q

Insert E

. Delete max

. Insert X

Insert A

/. Insert M

8. Delete max

Q. Insert P
10. Insert L
11. Insert E

12. Delete max

10

PRIORITY QUEUE p imsert P
0 L &3 4 s6 F 8 1
Pl@Q (msert &)
Answer 0 L 234 56 F 89
EIP|E insert &
0 £ X3 4 56 F 89
A delete -max - Q.
0 L R 3 4 s6 F 8 9
e|P X Lﬂser%x
0 41 X 3 4 s6 F 8 9
AlEIP| X LmseV%A
0 4L X3 4 56 F 89
ALEIM|PIX LMSGV%M
0O 4L X3 4 56 F 89
AlEM|P . Ol/ééfff—map(,ax
0 4 X 3 4 56 + 8 9
AlEWMIP P insert P
0 41 X3 4 56 F 89
AlEILH PP insert |
0 4L X3 4 56 F 89
AlETEILIM]PIP insert €
0 4 X3 4 56 F 89
AEIEILIMIP delete-max-—>P
0 L R 3 4 56 F 89

PRIORITY QUEUE
Option 3: Binary heap

» Will allow us to both insert and delete max in O(log n)
running time.

» There is no way to implement a priority queue in such a

way that insert and delete max can be achieved in O(1)
running time.

» Priority queues are synonyms to binary heaps.

12

PRIORITY QUEUE

Practice Time

» Given an empty binary heap that represents a priority
queue, perform the following operations:

1. Insert P /. Insert M
2. Insert Q 8. Delete max
3. InsertE 9. Insert P
4. Delete max 10. Insert L
5. Insert X 11. Insert E

Insert A 12. Delete max

.

PRIORITY QUEUE

14

Answer

insert P @

insert Q
P
insert E @/@
©
remove max (Q)
E]

insert X

insert A E) 0

(X
insert M % P

remove max (X)) g \

K

insertr L 0

insert E O (W

TODAY'S LECTURE IN A NUTSHELL

15

Lecture 16: Priority Queues and Heapsort

» Priority Queue

» Heapsort

HEAPSORT 16

Basic plan for heap sort

» Use a priority queue to develop a sorting method that
works in two steps:

» 1) Heap construction: build a binary heap with all n keys
that need to be sorted.

» 2) Sortdown: repeatedly remove and return the maximum
key.

HEAPSORT

O(nlogn) Heap construction

» Insert n elements, one by one, swim up to their appropriate position.
» We can do better!

» Key insight: After stnk(a,k,n) completes, the subtree rooted at k is a heap.

private static void sink(Comparable[] pgq, int k, int n) {
while (2*k <= n) {

int j = 2*k;

if (J < n && pq[j-1].compareTo(pq[j]) < 0){
Jj++

}

if (pg[k-1].compareTo(pg[]-1]) >= 0){
break;

}

Comparable temp = pq[k-1];

palk-1]1 = pq[]-1];

pq[J-1] = temp;

k = 3J;

17

HEAPSORT 18

(O(n) Heap construction

» Insert all nodes as is in indices 1 to n. We will turn this binary tree into
a heap.

» Ignore all leaves (indices n/2+1,...,n). Sink each internal node

» for(int k = n/2; k >= 1; k--)
sink(a, k, n);

sink(2, 11)

heap construction

sink(4, 11)
a) c) e)
"
\ﬂj ®
starting point (arbitrary order,
sink(3, 11)

sink(5, 11)

) ') .
result (heap-ordered,

HEAPSORT

Practice Time

» Run the first step of heapsort, heap construction, on the
array [2,9,7,6,5,8].

19

HEAPSORT

Answer: Heap construction

@ e
‘& o 4@5 @@5

starh Nt
N L =n/2=6/2=3

(orbi m‘fj '”) / g
/ simk (3,6

¢ i
2 @\ @\
A ?é ®
‘© OB 1@ 5@‘@
=, L
sink(Q‘é> Sﬂdi 6)
msut%[mf@f‘&@f@>

20

HEAPSORT

Sortdown

" Remove the maximum, one at a time, but leave in array
instead of nulling out.

» while(n>1){
exch(Ca, 1, n--);
sink(a, 1, n);

¥

» Key insight: After each iteration the array consists of a

heap-ordered subarray followed by a sub-array in final
order.

21

HEAPSORT

Sortdown

» while(n>1)1{
exch(Ca, 1, n--);
sink(a, 1, n);

3

sortdown

exch(l, 6) (M)
sink(1, 5)
o ®
@/ e 0

exch(l, 5)
Sink(l. 4)@/%)
[S)

dw @&

exch(l, 11)
sink(1, 10)

@ E) (E) X
h(1l, 10) h(l, 4)
esxicnl-c(l. 9) 9 ‘syi(gk(l. 3) e
R) (A) E)

©® ® 1

exch(l, 9) GD exch(1l, 3) (:>

sink(1, 8) sink(1, 2)
(E) @/ £

hn(l, 8 h(l, 2
exchil 9 () exehil, 3 ®
(0] E) E
(M) L €& W

R

exch(l, 7) 1
s)i(nk(l. 6) 0 A _
(M) ‘E ‘E
() L P ‘L M o]

SR QS lOT llx

result (sorted)

22

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

HEAPSORT

Practice Time

» Given the heap you constructed before, run the second

step of heapsort, sortdown, to sort the array
[2,9,7,6,5,8].

24

HEAPSORT

Answer: Sortdown

25

i !
2 /‘> 2 /“@
/? A /@g
\S[mmofj/&{o/ Sé\ifth(ii§é>)

B o
@5@“@9@5 6

4
@g ¢ L, 5 q 3 8 9

SM[&? - excle (4 4) excl({3)
MELST Sink (1 5y sink(4,2)
i‘ &
L
=] 6 9 Zg 36
& 9
47' 58 67

Wiy
gfx (1 1%) result-(sorted)

HEAPSORT 26

Heapsort analysis

» Heap construction (the fast version) makes O(n) exchanges and O(n) compares.
» Sortdown and therefore the entire heap sort O(n log n) exchanges and compares.
» In-place sorting algorithm with O(n log n) worst-case!
» Remember:
» mergesort: not in place, requires linear extra space.
» quicksort: quadratic time in worst case.

» Heapsort is optimal both for time and space in terms of Big-O, but:

» Inner loop longer than quick sort.

» Poor use of cache because it accesses memory in non-sequential manner, jumping around.

» Not stable.

HEAPSORT 27

Sorting: Everything you need to remember about it!

Which Sort In Stable Best Average Worst Remarks
place
Selection X O(nz) O(nz) 0(n2) N exchanges
Insertion X X O(n) O(nz) 0(n2) Use for small arrays

or partially ordered

Guaranteed
performance; stable

Merge X Omlogn)|Omnlogn) | O(nlogn)

: n log N probabilistic
Quick X O(nlogn)|O(nlogn) O(n*) guarantee; fastest!

Guaranteed

Heap X O(nlogn) O(nlogn) | Omlogn) |performance; in place

TODAY'S LECTURE IN A NUTSHELL

28

Lecture 16: Priority Queues and Heapsort

» Priority Queue

» Heapsort

ASSIGNED READINGS AND PRACTICE PROBLEMS

29

Readings:

» Recommended Textbook:
» Chapter 2.4 (Pages 308-327), 2.5 (336-344)

» Website:

» Priority Queues: https://algs4.cs.princeton.edu/24pqg/

» Visualization:

» Create (compare the n and nlogn approaches) and heapsort: https://visualgo.net/en/heap

Practice Problems:

» In-class worksheet

» 2.4.1-2.4.11. Also try some creative problems.

https://algs4.cs.princeton.edu/24pq/
https://visualgo.net/en/heap
https://cs.pomona.edu/classes/cs62/worksheets/Lecture16_worksheet.pdf

