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TODAY'S LECTURE IN A NUTSHELL

Lecture 16: Priority Queues and Heapsort

» Priority Queue

» Heapsort

Some slides adopted from Algorithms 4th Edition or COS226



PRIORITY QUEUE

Priority Queue ADT

» Two operations:

» Delete the maximum

» Insert

» Applications: load balancing and interruption handling in
OS, Huffman codes for compression, A* search for All,

Dijkstra’s and Prim's algorithm for graph search, etc.

» How can we implement a priority queue efficiently?



PRIORITY QUEUE

Option 1: Unordered array

» The lazy approach where we defer doing work (deleting
the maximum) until necessary.

» Insertis O(1) (will be implemented as push in stacks) and

assume we have the space in the array.

» Delete maximum is O(n) (have to traverse the entire array
to find the maximum element and exchange it with the last

element).



PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public UnorderedArrayMaxPQ(int capacity) {

pq = (Key[]) new Comparable[capacity];

n = 0;
¥

public boolean i1sEmpty() { return n == 0;
public int size() { return n; }
public void insert(Key x) { pgln++] = x; }

public Key delMax() {
int max = 0;
for (int 1 =1; 1 < n; 1++){
1f (pg[max].compareTo(pg[i]) < @) {
max = 1;
Iy

}
Key temp = pqg[max];

pglmax] = pql[n-1];
pqln-1] = temp;

return pql--n];



PRIORITY QUEUE
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Practice Time

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
unordered array (lazy approach):

1. Insert P /. Insert M
2. Insert Q 8. Delete max
3. InsertE 9. Insert P
4. Delete max 10. Insert L
5. Insert X 11. Insert E

Insert A 12. Delete max

.



PRIORITY QUEUE
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PRIORITY QUEUE
Option 2: Ordered array

» The eager approach where we do the work (keeping the
array sorted) up front to make later operations efficient.

» Insertis O(n) (we have to find the index to insert and shift
elements to perform insertion).

» Delete maximum is O(1) (just take the last element which
will be the maximum).



PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public OrderedArrayMaxPQ(int capacity) {

pq = (Key[]) (new Comparable[capacity]);

n=0;

public boolean isEmpty() { return n == 0; }
public int size() { return n; }
public Key delMax() { return pq[--n]; }

public void insert(Key key) {

int 1 = n-1;

while (1 >= 0 && key.compareTo(pq[i]) < @) {
pali+1] = pql[il;
1--3

}

pal[i+l] = key;

N++;



PRIORITY QUEUE

Practice Time

0 £ X 3 4 56 F 8 9

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
ordered array (eager approach):

1.

o~ Ol

AW N

Insert P
Insert Q

Insert E

. Delete max

. Insert X

Insert A

/. Insert M

8. Delete max

Q. Insert P
10. Insert L
11. Insert E

12. Delete max

10
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PRIORITY QUEUE
Option 3: Binary heap

» Will allow us to both insert and delete max in O(log n)
running time.

» There is no way to implement a priority queue in such a

way that insert and delete max can be achieved in O(1)
running time.

» Priority queues are synonyms to binary heaps.

12



PRIORITY QUEUE

Practice Time

» Given an empty binary heap that represents a priority
queue, perform the following operations:

1. Insert P /. Insert M
2. Insert Q 8. Delete max
3. InsertE 9. Insert P
4. Delete max 10. Insert L
5. Insert X 11. Insert E

Insert A 12. Delete max

.



PRIORITY QUEUE
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TODAY'S LECTURE IN A NUTSHELL
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Lecture 16: Priority Queues and Heapsort

» Priority Queue

» Heapsort



HEAPSORT 16

Basic plan for heap sort

» Use a priority queue to develop a sorting method that
works in two steps:

» 1) Heap construction: build a binary heap with all n keys
that need to be sorted.

» 2) Sortdown: repeatedly remove and return the maximum
key.



HEAPSORT

O(nlogn) Heap construction

» Insert n elements, one by one, swim up to their appropriate position.
» We can do better!

» Key insight: After stnk(a,k,n) completes, the subtree rooted at k is a heap.

private static void sink(Comparable[] pgq, int k, int n) {
while (2*k <= n) {

int j = 2*k;

if (J < n && pq[j-1].compareTo(pq[j]) < 0){
Jj++

}

if (pg[k-1].compareTo(pg[]-1]) >= 0){
break;

}

Comparable temp = pq[k-1];

palk-1]1 = pq[]-1];

pq[J-1] = temp;

k = 3J;

17



HEAPSORT 18

(O(n) Heap construction

» Insert all nodes as is in indices 1 to n. We will turn this binary tree into
a heap.

» Ignore all leaves (indices n/2+1,...,n). Sink each internal node

» for(int k = n/2; k >= 1; k--)
sink(a, k, n);

sink(2, 11)

heap construction

sink(4, 11)
a) c) e)
"
\ﬂj ®
starting point (arbitrary order,
sink(3, 11)

sink(5, 11)

) ' ) .
result (heap-ordered,



HEAPSORT

Practice Time

» Run the first step of heapsort, heap construction, on the
array [2,9,7,6,5,8].
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HEAPSORT

Answer: Heap construction
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HEAPSORT

Sortdown

" Remove the maximum, one at a time, but leave in array
instead of nulling out.

» while(n>1){
exch(Ca, 1, n--);
sink(a, 1, n);

¥

» Key insight: After each iteration the array consists of a

heap-ordered subarray followed by a sub-array in final
order.

21



HEAPSORT

Sortdown

» while(n>1)1{
exch(Ca, 1, n--);
sink(a, 1, n);

3
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Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1



HEAPSORT

Practice Time

» Given the heap you constructed before, run the second

step of heapsort, sortdown, to sort the array
[2,9,7,6,5,8].

24



HEAPSORT

Answer: Sortdown
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HEAPSORT 26

Heapsort analysis

» Heap construction (the fast version) makes O(n) exchanges and O(n) compares.
» Sortdown and therefore the entire heap sort O(n log n) exchanges and compares.
» In-place sorting algorithm with O(n log n) worst-case!
» Remember:
» mergesort: not in place, requires linear extra space.
» quicksort: quadratic time in worst case.

» Heapsort is optimal both for time and space in terms of Big-O, but:

» Inner loop longer than quick sort.

» Poor use of cache because it accesses memory in non-sequential manner, jumping around.

» Not stable.



HEAPSORT 27

Sorting: Everything you need to remember about it!

Which Sort In Stable Best Average Worst Remarks
place
Selection X O(nz) O(nz) 0(n2) N exchanges
Insertion X X O(n) O(nz) 0(n2) Use for small arrays

or partially ordered

Guaranteed
performance; stable

Merge X Omlogn)|Omnlogn) | O(nlogn)

: n log N probabilistic
Quick X O(nlogn)|O(nlogn) O(n*) guarantee; fastest!

Guaranteed

Heap X O(nlogn) O(nlogn) | Omlogn) |performance; in place
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Lecture 16: Priority Queues and Heapsort

» Priority Queue

» Heapsort



ASSIGNED READINGS AND PRACTICE PROBLEMS
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Readings:

» Recommended Textbook:
» Chapter 2.4 (Pages 308-327), 2.5 (336-344)

» Website:

» Priority Queues: https://algs4.cs.princeton.edu/24pqg/

» Visualization:

» Create (compare the n and nlogn approaches) and heapsort: https://visualgo.net/en/heap

Practice Problems:

» In-class worksheet

» 2.4.1-2.4.11. Also try some creative problems.


https://algs4.cs.princeton.edu/24pq/
https://visualgo.net/en/heap
https://cs.pomona.edu/classes/cs62/worksheets/Lecture16_worksheet.pdf

