
CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

16: Priority Queues and Heapsort

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki 
she/her/hers

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Priority Queues and Heapsort

▸ Priority Queue

▸ Heapsort

2

Some slides adopted from Algorithms 4th Edition or COS226

PRIORITY QUEUE

Priority Queue ADT

▸ Two operations:

▸ Delete the maximum

▸ Insert

▸ Applications: load balancing and interruption handling in
OS, Huffman codes for compression, A* search for AI,
Dijkstra’s and Prim's algorithm for graph search, etc.

▸ How can we implement a priority queue efficiently?

3

PRIORITY QUEUE

Option 1: Unordered array

▸ The lazy approach where we defer doing work (deleting
the maximum) until necessary.

▸ Insert is (will be implemented as push in stacks) and
assume we have the space in the array.

▸ Delete maximum is (have to traverse the entire array
to find the maximum element and exchange it with the last
element).

O(1)

O(n)

4

PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public UnorderedArrayMaxPQ(int capacity) {
 pq = (Key[]) new Comparable[capacity];
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public void insert(Key x) { pq[n++] = x; }

 public Key delMax() {
 int max = 0;
 for (int i = 1; i < n; i++){
 if (pq[max].compareTo(pq[i]) < 0) {
 max = i;
 }
 }
 Key temp = pq[max];
 pq[max] = pq[n-1];
 pq[n-1] = temp;

 return pq[--n];
 }
}

5

PRIORITY QUEUE 6

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
unordered array (lazy approach):

PRIORITY QUEUE 7

Answer

PRIORITY QUEUE

Option 2: Ordered array

▸ The eager approach where we do the work (keeping the
array sorted) up front to make later operations efficient.

▸ Insert is (we have to find the index to insert and shift
elements to perform insertion).

▸ Delete maximum is (just take the last element which
will be the maximum).

O(n)

O(1)

8

PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
 private Key[] pq; // elements
 private int n; // number of elements

 // set inititial size of heap to hold size elements
 public OrderedArrayMaxPQ(int capacity) {
 pq = (Key[]) (new Comparable[capacity]);
 n = 0;
 }

 public boolean isEmpty() { return n == 0; }
 public int size() { return n; }
 public Key delMax() { return pq[--n]; }

 public void insert(Key key) {
 int i = n-1;
 while (i >= 0 && key.compareTo(pq[i]) < 0) {
 pq[i+1] = pq[i];
 i--;
 }
 pq[i+1] = key;
 n++;
 }
}

9

PRIORITY QUEUE 10

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
ordered array (eager approach):

PRIORITY QUEUE 11

Answer

PRIORITY QUEUE

Option 3: Binary heap

▸ Will allow us to both insert and delete max in
running time.

▸ There is no way to implement a priority queue in such a
way that insert and delete max can be achieved in
running time.

▸ Priority queues are synonyms to binary heaps.

O(log n)

O(1)

12

PRIORITY QUEUE 13

Practice Time

1. Insert P

2. Insert Q

3. Insert E

4. Delete max

5. Insert X

6. Insert A

7. Insert M

8. Delete max

9. Insert P

10. Insert L

11. Insert E

12. Delete max

▸ Given an empty binary heap that represents a priority
queue, perform the following operations:

PRIORITY QUEUE 14

Answer

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Priority Queues and Heapsort

▸ Priority Queue

▸ Heapsort

15

HEAPSORT

Basic plan for heap sort

16

▸ Use a priority queue to develop a sorting method that
works in two steps:

▸ 1) Heap construction: build a binary heap with all keys
that need to be sorted.

▸ 2) Sortdown: repeatedly remove and return the maximum
key.

n

HEAPSORT

 Heap constructionO(n log n)

17

▸ Insert n elements, one by one, swim up to their appropriate position.

▸ We can do better!

▸ Key insight: After sink(a,k,n) completes, the subtree rooted at k is a heap.

 private static void sink(Comparable[] pq, int k, int n) {
 while (2*k <= n) {
 int j = 2*k;
 if (j < n && pq[j-1].compareTo(pq[j]) < 0){
 j++
 }
 if (pq[k-1].compareTo(pq[j-1]) >= 0){
 break;
 }
 Comparable temp = pq[k-1];
 pq[k-1] = pq[j-1];
 pq[j-1] = temp;
 k = j;
 }
 }

HEAPSORT

 Heap constructionO(n)

18

▸ Insert all nodes as is in indices 1 to n. We will turn this binary tree into
a heap.

▸ Ignore all leaves (indices n/2+1,…,n). Sink each internal node

▸ for(int k = n/2; k >= 1; k--)  
 sink(a, k, n);

a)

b)

c)

d)

e)

f)

HEAPSORT 19

Practice Time

▸ Run the first step of heapsort, heap construction, on the
array [2,9,7,6,5,8].

HEAPSORT 20

Answer: Heap construction

HEAPSORT

Sortdown

21

‣ Remove the maximum, one at a time, but leave in array
instead of nulling out.

▸ while(n>1){  
 exch(a, 1, n--);  
 sink(a, 1, n);  
}

▸ Key insight: After each iteration the array consists of a
heap-ordered subarray followed by a sub-array in final
order.

HEAPSORT

Sortdown

22

▸ while(n>1){  
 exch(a, 1, n--);  
 sink(a, 1, n);  
}

HEAPSORT 23

HEAPSORT 24

Practice Time

▸ Given the heap you constructed before, run the second
step of heapsort, sortdown, to sort the array
[2,9,7,6,5,8].

HEAPSORT 25

Answer: Sortdown

HEAPSORT

Heapsort analysis

26

▸ Heap construction (the fast version) makes exchanges and compares.

▸ Sortdown and therefore the entire heap sort exchanges and compares.

▸ In-place sorting algorithm with worst-case!

▸ Remember:

▸ mergesort: not in place, requires linear extra space.

▸ quicksort: quadratic time in worst case.

▸ Heapsort is optimal both for time and space in terms of Big-O, but:

▸ Inner loop longer than quick sort.

▸ Poor use of cache because it accesses memory in non-sequential manner, jumping around.

▸ Not stable.

O(n) O(n)

O(n log n)

O(n log n)

HEAPSORT

Sorting: Everything you need to remember about it!

Which Sort In
place

Stable Best Average Worst Remarks

Selection X exchanges

Insertion X X Use for small arrays
or partially ordered

Merge X Guaranteed
performance; stable

Quick X probabilistic
guarantee; fastest!

Heap X Guaranteed
performance; in place

O(n2) O(n2) O(n2) n

O(n2) O(n2)O(n)

O(n log n) O(n log n) O(n log n)

27

O(n log n) O(n log n) O(n2)
n log n

O(n log n) O(n log n) O(n log n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Priority Queues and Heapsort

▸ Priority Queue

▸ Heapsort

28

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Recommended Textbook:

▸ Chapter 2.4 (Pages 308-327), 2.5 (336-344)

▸ Website:

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/

▸ Visualization:

▸ Create (compare the n and nlogn approaches) and heapsort: https://visualgo.net/en/heap

29

Practice Problems:

▸ In-class worksheet

▸ 2.4.1-2.4.11. Also try some creative problems.

https://algs4.cs.princeton.edu/24pq/
https://visualgo.net/en/heap
https://cs.pomona.edu/classes/cs62/worksheets/Lecture16_worksheet.pdf

