
CS062  
DATA STRUCTURES AND ADVANCED PROGRAMMING

10-11: Sorting Basics and Comparators

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition 

SORTING

Alexandra Papoutsaki 
she/her/hers



TODAY’S LECTURE IN A NUTSHELL

Lecture 10-11: Sorting Basics and Comparators

▸ Introduction 

▸ Selection sort 

▸ Insertion sort 

▸ Comparators

2

Some slides adopted from Algorithms 4th Edition or COS226



INTRODUCTION

Why study sorting?

▸ It’s more common than you think: e.g., sorting flights by 
price, contacts by last name, files by size, emails by day 
sent, neighborhoods by zipcode, etc. 

▸ Good example of how to compare the performance of 
different algorithms for the same problem. 

▸ Some sorting algorithms relate to data structures. 

▸ Sorting your data will often be a good starting point when 
solving other problems (keep that in mind for interviews).



INTRODUCTION

Definitions

▸ Sorting: the process of arranging  items of a collection in 
non-decreasing order (e.g., numerically or alphabetically). 

▸ Key: assuming that an item consists of multiple 
components, the key is the property based on which we 
sort items. 

▸ Examples: items could be books and potential keys are 
the title or the author which can be sorted alphabetically 
or the ISBN which can be sorted numerically.

n



INTRODUCTION

How many different algorithms for sorting can there be?

▸ Adaptive 
heapsort 

▸ Bitonic sorter 

▸ Block sort 

▸ Bubble sort 

▸ Bucket sort 

▸ Cascade 
mergesort 

▸ Cocktail sort 

▸ Comb sort 

▸ Flashsort 

▸ Gnome sort 

▸ Heapsort 

▸ Insertion sort 

▸ Library sort 

▸ Mergesort 

▸ Odd-even sort 

▸ Pancake sort 

▸ Quicksort 

▸ Radixsort 

▸ Selection sort 

▸ Shell sort 

▸ Spaghetti sort 

▸ Treesort 

▸ …



INTRODUCTION

Rules of the game - Comparing

▸ We will be sorting arrays of  items, where each item 
contains a key. In Java, objects are responsible in telling us 
how to naturally compare their keys.  

▸ Let’s say we want to sort an array of objects of type T.  

▸ Our class T should implement the Comparable interface 
(more by the end of this lecture). We will need to 
implement the compareTo method to satisfy a total order.

n

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html


INTRODUCTION

Total order

▸ Sorting is well defined if and only if there is total order. 

▸ Total order: a binary relation  that satisfies: 

▸ Reflexivity: for all , . 

▸ Totality (strongly connected): for all  and , if both  or . 

▸ Transitivity: for all  and , if both  or  then . 

▸ Antisymmetry: for all  and , if both  and  then . 

▸ For example, standard numerical order for numbers, lexicographical 
order for strings, chronological order for dates, etc.

≤

v v ≤ v

v w v ≤ w w ≤ v

v w v ≤ w w ≤ x v ≤ x

v w v ≤ w w ≤ v v = w



INTRODUCTION

Rules of the game

▸ We will be sorting arrays of  items, where each item contains a key. 

▸ In Java, objects are responsible in telling us how to naturally compare their keys.  

▸ This is achieved by making our class T implement the Comparable interface (more on this by the 
end of the lecture). We will need to implement compareTo to satisfy a total order: 

▸ public int compareTo(T that)

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w. 

▸ Returns <0 if v is smaller than w. 

▸ Returns 0 if v is equal to w. 

▸ We can now use the same sorting algorithm to sort collections of different data types. 

▸ Java classes such as Integer, Double, String, File all implement Comparable.

n

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html


INTRODUCTION

Two useful abstractions

▸ Let’s assume we want to sort an array of comparable objects T. 

▸ T is a bounded generic that implements the interface Comparable. 

▸ We will refer to data only through comparisons and exchanges. 

▸ Comparisons: Is v less than w? 

   v.compareTo(w) < 0;
   

▸ Exchanges: swap item in array a[] at index  i with the one at index j.           
 T temp = a[i]; 
   a[i]=a[j];  
   a[j]=temp;

 



INTRODUCTION

Rules of the game - Cost model

▸ Sorting cost model: we count compares and exchanges. If 
a sorting algorithm does not use exchanges, we count 
array accesses. 

▸ There are other types of sorting algorithms where they are 
not based on comparisons (e.g., radixsort). We will not see 
these in CS62 but stay tuned for CS140.



INTRODUCTION

Rules of the game - Memory usage

▸ Extra memory: often as important as running time. Sorting 
algorithms are divided into two categories: 

▸ In place: use constant or logarithmic extra memory, 
beyond the memory needed to store the items to be 
sorted. 

▸ Not in place: use linear auxiliary memory.



INTRODUCTION

Rules of the game - Stability

▸ Stable: sorting algorithms that sort repeated elements in 
the same order that they appear in the input. 

https://en.wikipedia.org/wiki/Sorting_algorithm#/media/File:Sorting_stability_playing_cards.svg

https://en.wikipedia.org/wiki/Sorting_algorithm#/media/File:Sorting_stability_playing_cards.svg


TODAY’S LECTURE IN A NUTSHELL

Lecture 10-11: Sorting Basics and Comparators

▸ Introduction 

▸ Selection sort 

▸ Insertion sort 

▸ Comparators

13



SELECTION SORT

Selection sort

▸ Divide the array in two parts: a sorted subarray on the left and an 
unsorted on the right. 

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26



▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

SELECTION SORT

Selection sort



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 44 38 5 47 3 36 26



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 44 38 5 47 3 36 26



1 44 38 5 47 3 36 26

SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26



▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

SELECTION SORT

Selection sort



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26



▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

SELECTION SORT

Selection sort



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38



▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

SELECTION SORT

Selection sort



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 44 47 38



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 44 47 38



▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 44 47 38



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 47 44



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 47 44



▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 38 47 44



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47



▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 38 44 47



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47



SELECTION SORT

Selection sort

▸ Repeat: 

▸ Find the smallest element in the unsorted subarray. 

▸ Exchange it with the leftmost unsorted element. 

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47



https://algs4.cs.princeton.edu/lectures/demo/21DemoSelectionSort.mov 

https://algs4.cs.princeton.edu/lectures/demo/21DemoSelectionSort.mov


SELECTION SORT

Selection sort 

public static <E extends Comparable<E>> void selectionSort(E[] a) {

   }



SELECTION SORT

Selection sort

public static <E extends Comparable<E>> void selectionSort(E[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
            int min = i;
            for (int j = i+1; j < n; j++) {
                if (a[j].compareTo(a[min])<0){
                    min = j;
                }
            }
            E temp = a[i];  
             a[i]=a[min];  
             a[min]=temp;
       }
   }
▸ Invariants: At the end of each iteration i: 

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i] 

▸ no entry in a[i+1…n-1] is smaller than any entry in a[0…i] 

 In iteration i←

 Find the index min of the 
smallest remaining array
←

 swap a[i] and a[min]←



SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static <E extends Comparable<E>> void selectionSort(E[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
            int min = i;
            for (int j = i+1; j < n; j++) {
                if (a[j].compareTo(a[min])<0){
                    min = j;
                }
            }
            E temp = a[i];  
             a[i]=a[min];  
             a[min]=temp;
       }
   }

▸ Comparisons: ~ , that is . 

▸ Exchanges:  or , making it useful when exchanges are expensive. 

▸ Running time is quadratic, even if input is sorted. 

▸ In-place, requires almost no additional memory. 

▸ Not stable, think of the array [5_a, 3, 5_b, 1] which will end up as [1, 3, 5_b, 5_a].

1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

n O(n)



SELECTION SORT

Practice Time

‣ Using selection sort, sort the array with elements 
[12,10,16,11,9,7]. 

‣ Visualize your work for every iteration of the algorithm.



SELECTION SORT

Answer

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort


TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Sorting Basics I

▸ Introduction 

▸ Selection sort 

▸ Insertion sort

45



INSERTION SORT

Insertion sort

▸ Keep a partially sorted subarray on the left and an unsorted subarray on 
the right 

▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray and insert it 
there. 

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

3 38 44 5 47 1 36 26

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26



3 38 44 5 47 1 36 26

▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47



▸ Repeat: 

▸ Examine the next element in the unsorted subarray. 

▸ Find the location it belongs within the sorted subarray 
and insert it there. 

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47



https://algs4.cs.princeton.edu/lectures/demo/21DemoInsertionSort.mov 

https://algs4.cs.princeton.edu/lectures/demo/21DemoInsertionSort.mov


INSERTION SORT

In case you didn’t get this…

‣ https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U


INSERTION SORT

Insertion sort

public static <E extends Comparable<E>> void insertionSort(E[] a) {

   }



INSERTION SORT

Insertion sort

public static <E extends Comparable<E>> void insertionSort(E[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
           for (int j = i; j > 0; j--) {
               if(a[j].compareTo(a[j-1])<0){ 
                   E temp = a[j];  
                    a[j]=a[j-1];  
                    a[j-1]=temp;               
               }
               else{
                  break;
               }
           }
       }
   }
▸ Invariants: At the end of each iteration i: 

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]



INSERTION SORT

Insertion sort: mathematical analysis for worst-case

public static <E extends Comparable<E>> void insertionSort(E[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
           for (int j = i; j > 0; j--) {
               if(a[j].compareTo(a[j-1])<0){ 
                   E temp = a[j];  
                    a[j]=a[j-1];  
                    a[j-1]=temp;               
               }
               else{
                  break;
               }
           }
       }
   }
▸ Comparisons: ~ , that is . 

▸ Exchanges: ~ , that is . 

▸ Worst-case running time is quadratic. 

▸ In-place, requires almost no additional memory. 

▸ Stable

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)



INSERTION SORT

Insertion sort: average and best case

public static <E extends Comparable<E>> void insertionSort(E[] a) {
        int n = a.length;
        for (int i = 0; i < n; i++) {
           for (int j = i; j > 0; j--) {
               if(a[j].compareTo(a[j-1])<0){ 
                   E temp = a[j];  
                    a[j]=a[j-1];  
                    a[j-1]=temp;               
               }
               else{
                  break;
               }
           }
       }
   }
▸ Average case: quadratic for both comparisons and exchanges ~  when sorting a randomly ordered 

array. 

▸ Best case:  comparisons and  exchanges for an already sorted array.

n2/4

n − 1 0

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

https://www.toptal.com/developers/sorting-algorithms/insertion-sort


INSERTION SORT

Practice Time

‣ Using insertion sort, sort the array with elements 
[12,10,16,11,9,7]. 

‣ Visualize your work for every iteration of the algorithm.



INSERTION SORT

Answer

 https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort
https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort


TODAY’S LECTURE IN A NUTSHELL

Lecture 10-11: Sorting Basics and Comparators

▸ Introduction 

▸ Selection sort 

▸ Insertion sort 

▸ Comparators

109



COMPARATORS

Comparable 

▸ Interface with a single method that we need to implement: 
public int compareTo(T that) 

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w. 

▸ Returns <0 if v is smaller than w. 

▸ Returns 0 if v is equal to w. 

▸ Corresponds to natural ordering. 



COMPARATORS

Comparator 

▸ Sometimes the natural ordering is not the type of ordering we want. 

▸ Comparator is an interface which allows us to dictate that kind of 
ordering we want by implementing the method:  
public int compare(T this, T that) 

▸ Implement it so that compare(v, w):

▸ Returns >0 if v is greater than w. 

▸ Returns <0 if v is smaller than w. 

▸ Returns 0 if v is equal to w.



COMPARATORS

The Java Collections Framework

112

 https://en.wikipedia.org/wiki/Java_collections_framework  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework


COMPARATORS

Sorting Collections 

‣ Collections class contains: 

‣ public static <T extends Comparable<? super T>> void sort(List<T> 
list)

‣ Generic methods introduce their own type parameters. 

‣ Use extends with generics, even if the type parameter implements an interface. 

‣ The class T itself or one of its ancestors implements Comparable. 

‣ Collections.sort(list)

‣ Implemented as optimized mergesort 

‣ If list’s elements do not implement Comparable, throw ClassCastException.



COMPARATORS

Alternative Sorting of Collections 

‣ Collections class contains: 

‣ static <T> void sort(List<T> list, Comparator<? 
super T> c)

‣ Collections.sort(list, someComparator);

‣ If list’s elements do not implement Comparable or 
cannot be compared with Comparator, throw 
ClassCastException.



COMPARATORS

Example: Natural sorting for Employees

public class Employee implements Comparable<Employee> { 

    private int id; 
    private String name; 
    private int age; 
    private long salary; 

    public Employee() { 
    } 

    public Employee(int id, String name, int age, long salary) { 
        this.id = id; 
        this.name = name; 
        this.age = age; 
        this.salary = salary; 
    } 

    //getters and setters

    @Override 
    public int compareTo(Employee e) { 
        if (this.id > e.id) { 
            return 1; 
        } else if (this.id < e.id) { 
            return -1; 
        } else { 
            return Character.toString(this.name.charAt(0)).compareToIgnoreCase(Character.toString(e.name.charAt(0))); 
        } 
    } 

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator


COMPARATORS

Example: Alternative sorting for Employees

    public static Comparator<Employee> nameComparator = new Comparator<Employee>() { 
        @Override 
        public int compare(Employee e1, Employee e2) { 
            return e1.getName().compareTo(e2.getName()); 
        } 
    }; 

    public static Comparator<Employee> idComparator = new Comparator<Employee>() { 
        @Override 
        public int compare(Employee e1, Employee e2) { 
            return Integer.valueOf(e1.getId()).compareTo(Integer.valueOf(e2.getId())); 
        } 
    }; 

    public static void main(String[] args) { 

        Employee e1 = new Employee(5, "Yush", 22, 1000); 
        Employee e2 = new Employee(8, "Tharun", 24, 25000); 
        Employee e3 = new Employee(5, "Yash", 18, 10000); 
        List<Employee> list = new ArrayList<Employee>(); 
        list.add(e1); 
        list.add(e2); 
        list.add(e3); 
         
        System.out.print("Unsorted list: "); 
        System.out.println(list); 
         
        Collections.sort(list); // call @compareTo(o1) 
        System.out.print("Naturally sorted list: "); 
        System.out.println(list); 

        Collections.sort(list, Employee.nameComparator); // call @compare (o1,o2) 
        System.out.print("Sorted list based on names: "); 
        System.out.println(list); 

        Collections.sort(list, Employee.idComparator); // call @compare (o1,o2) 
        System.out.print("Sorted list based on IDs: "); 
        System.out.println(list); 

}

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator


TODAY’S LECTURE IN A NUTSHELL

Lecture 10-11: Sorting Basics and Comparators

▸ Introduction 

▸ Selection sort 

▸ Insertion sort 

▸ Comparators

117



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:
▸ Recommended Textbook: 

▸ Chapter 2.1 (pages 244–262) 

▸ Chapter 2.5 (Pages 338-339) 

▸ Recommended Textbook Website: 

▸ Elementary sorts: https://algs4.cs.princeton.edu/21elementary/ 

▸ Code: https://algs4.cs.princeton.edu/21elementary/Selection.java.html and  
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html 

▸ Oracle Documentation: 

▸ Comparable: https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html 

▸ Comparator: https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

118

Practice Problems:
▸ 2.1.1-2.1.8

Code
▸ Lecture 10-11 code

https://algs4.cs.princeton.edu/21elementary/
https://algs4.cs.princeton.edu/21elementary/Selection.java.html
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html
https://github.com/pomonacs622023fa/code/tree/main/Lecture10_11

