
CS062  
DATA STRUCTURES AND ADVANCED PROGRAMMING

5: Analysis of Algorithms

BASIC DATA STRUCTURES

Alexandra Papoutsaki 
she/her/hers

Tom Yeh 
he/him/his

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition 



TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction 

▸ Experimental Analysis of Running Time 

▸ Mathematical Models of Running Time 

▸ Order of Growth Classification 

▸ Analysis of Memory Consumption

2

Some slides adopted from Algorithms 4th Edition or COS226



INTRODUCTION

Different Roles

3

  

You

Programmer 
needs a working solution

Theoretician 
Wants to understand

Client 
Wants an efficient solution

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


INTRODUCTION

Why analyze algorithmic efficiency? 

‣ Predict performance. 
‣ Compare algorithms that solve the same problem. 
‣ Provide guarantees. 
‣ Understand theoretical basis. 
‣ Avoid performance bugs. 

Why is my program so slow? 
Why does it run out of memory? 

We can use a combination of experiments and mathematical modeling.

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction 

▸ Experimental Analysis of Running Time 

▸ Mathematical Models of Running Time 

▸ Order of Growth Classification 

▸ Analysis of Memory Consumption

5



EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ 3-SUM: Given  distinct numbers, how many unordered triplets sum to 0?n

‣ Input: 30  -40  -20  -10  40  0  10  5 
‣ Output: 4 
‣ 30  -40  10 
‣ 30  -20 -10 
‣ -40  40  0  
‣ -10   0    10

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ 3-SUM: brute-force algorithm

public class ThreeSum {    

public static int count(int[] a) {
int n = a.length;
int count = 0;
for (int i = 0; i < n; i++) {

for (int j = i+1; j < n; j++) {
for (int k = j+1; k < n; k++) {

if (a[i] + a[j] + a[k] == 0) {
count++;

}
}

}
}
return count;

} 

  

public static void main(String[] args)  {
String filename = args[0];
int fileSize = Integer.parseInt(args[1]);
try {

Scanner scanner = new Scanner(new File(filename));
int intList[] = new int[fileSize];
int i=0;
while(scanner.hasNextInt()){

intList[i++]=scanner.nextInt();
}
Stopwatch timer = new Stopwatch();
int count = count(intList);
System.out.println("elapsed time = " + timer.elapsedTime());
System.out.println(count);

}
catch (IOException ioe) {

throw new IllegalArgumentException("Could not open " + filename, ioe);
}

} 

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Empirical Analysis

  

‣ Input: 8ints.txt 
‣ Output: 4 and 0 

‣ Input: 1Kints.txt 
‣ Output: 70 and 0.081 

‣ Input: 2Kints.txt 
‣ Output: 528 and 0.38 

‣ Input: 2Kints.txt 
‣ Output: 528 and 0.371 

‣ Input: 4Kints.txt 
‣ Output: 4039 and 2.792 

‣ Input: 8Kints.txt 
‣ Output: 32074 and 21.623 

‣ Input: 16Kints.txt 
‣ Output: 255181 and 177.344

Input size Time
8 0

1000 0.081
2000 0.38
2000 0.371
4000 2.792
8000 21.623

16000 177.344

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Plots and log-log plots 

  n

T(n)

logn

logT(n)

Straight line of slope 3

‣ Regression:  (power-law). 
‣ , where  is slope. 
‣ Experimentally: ~ , in our example for ThreeSum.

T(n) = anb

log T(n) = b log n + log a b
0.42 × 10−10n3

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Doubling hypothesis

‣ Doubling input size increases running time by a factor of  

‣ Run program doubling the size of input. Estimate factor of growth: 

‣ . 

‣ E.g., in our example, for pair of input sizes  and  the 
ratio is , therefore  is approximately . 
‣ Assuming we know , we can figure out . 
‣ E.g., in our example, . 
‣ Solving for  we get .

T(n)
T(n/2)

T(n)
T(n/2)

=
anb

a( n
2 )b

= 2b

8000 16000
8.2 b 3

b a
T(16000) = 177.34 = a × 160003

a a = 0.42 × 10−10

  

Input size Time
8 0

1000 0.081
2000 0.38
4000 2.792
8000 21.623

16000 177.344

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Practice Time

‣ Suppose you time your code and you make the following 
observations. Which function is the closest model of ? 

A.  
B.  
C.  
D.

T(n)
n2

6 × 10−4n
5 × 10−9n2

7 × 10−9n2

  

Input size Time
1000 0
2000 0.0
4000 0.1
8000 0.3

16000 1.3
32000 5.1

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Answer

‣ C.  
‣ Ratio is approximately , therefore . 
‣ . 
‣ Solving for .s

5 × 10−9n2

4 b = 2
T(32000) = 5.1 = a × 320002

a = 4.98 × 10−9

  

Input size Time
1000 0
2000 0.0
4000 0.1
8000 0.3

16000 1.3
32000 5.1

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


EXPERIMENTAL ANALYSIS OF RUNNING TIME

‣ Effects on performance

‣ System independent effects: Algorithm + input data 
‣ Determine  in power law relationships. 

‣ System dependent effects: Hardware (e.g., CPU, memory, cache) 
+ Software (e.g., compiler, garbage collector) + System (E.g., 
operating system, network, etc). 

‣ Dependent and independent effects determine  in power law 
relationships. 

‣ Although it is hard to get precise measurements, experiments in 
Computer Science are cheap to run.

b

a

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction 

▸ Experimental Analysis of Running Time 

▸ Mathematical Models of Running Time 

▸ Order of Growth Classification 

▸ Analysis of Memory Consumption

14



MATHEMATICAL MODELS OF RUNNING TIME

‣ Total Running Time

‣ Popularized by Donald Knuth in the 60s in the four volumes of 
“The Art of Computer Programming”. 
‣ Knuth won the Turing Award (The “Nobel” in CS) in 1974. 

‣ In principle, accurate mathematical models for performance of 
algorithms are available. 

‣ Total running time = sum of cost x frequency for all operations. 
‣ Need to analyze program to determine set of operations. 
‣ Exact cost depends on machine, compiler. 
‣ Frequency depends on algorithm and input data.

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


MATHEMATICAL MODELS OF RUNNING TIME

‣ Cost of basic operations

‣ Add < integer multiply < integer divide < floating-point add < 
floating-point multiply < floating-point divide.

  

Operation Example Nanoseconds
Variable declaration int a

Assignment statement a = b
Integer comparison a < b

Array element access a[i]
Array length a.length

1D array allocation new int[n]
2D array allocation new int[n][n]

string concatenation s+t

c1

c2

c3
c4

c5
c6n
c7n2

c8n

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


MATHEMATICAL MODELS OF RUNNING TIME

‣ Example: 1-SUM

‣ How many operations as a function of ? 

       int count = 0;
        for (int i = 0; i < n; i++) {
            if (a[i] == 0) {
                count++;
            }
        }

n

  

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment ton 2n

n
n

n + 1
2
2

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


MATHEMATICAL MODELS OF RUNNING TIME

‣ Example: 2-SUM

‣ How many operations as a function of ? 

       int count = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i+1; j < n; j++) {
                if (a[i] + a[j] == 0) {
                    count++;
                }
            }
        }

n

  

Operation Frequency

Variable declaration
Assignment

Less than
Equal to

Array access
Increment                        to1/2n(n + 1) n2

n(n − 1)
1/2n(n − 1)

1/2(n + 1)(n + 2)
n + 2
n + 2

BECOMING TOO TEDIOUS TO CALCULATE

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


MATHEMATICAL MODELS OF RUNNING TIME

‣ Tilde notation

‣ Estimate running time (or memory) as a function of input size . 
‣ Ignore lower order terms. 
‣ When  is large, lower order terms become negligible. 

‣ Example 1:         ~  

‣ Example 2:      ~  

‣ Example 3:   ~  

‣ Technically  ~  means that 

n

n

1
6

n3 + 10n + 100 n3

1
6

n3 + 100n2 + 47 n3

1
6

n3 + 100n
2
3 +

1/2
n

n3

f(n) g(n) lim
n→∞

f(n)
g(n)

= 1



MATHEMATICAL MODELS OF RUNNING TIME

‣ Simplification

‣ Cost model: Use some basic operation as proxy for running 
time.  
‣ E.g., array accesses 

‣ Combine it with tilde notation. 

‣ ~  array accesses for the 2-SUM problemn2

Operation Frequency Tilde notation

Variable declaration ~
Assignment ~

Less than ~
Equal to ~

Array access ~
Increment                        to                         ~

n(n − 1)
1/2n(n − 1)

1/2(n + 1)(n + 2)
n + 2
n + 2

1/2n(n + 1) n2
n2
n2
n2
n
n

n2



MATHEMATICAL MODELS OF RUNNING TIME

‣ Back to the 3-SUM problem

‣ Approximately how many array accesses as a function of input 
size ? 

        
        int count = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i+1; j < n; j++) {
                for (int k = j+1; k < n; k++) {
                    if (a[i] + a[j] + a[k] == 0) {
                        count++;
                    }
                }
            }
        }

‣  array accesses. 

n

n3



MATHEMATICAL MODELS OF RUNNING TIME

‣ Useful approximations for the analysis of algorithms

‣ Harmonic sum:      ~  
‣ Triangular sum:     ~  
‣ Geometric sum:    ~ , when  

power of 2. 

‣ Binomial coefficients:      ~  when k is a small constant. 

‣ Use a tool like Wolfram alpha. 

Hn = 1 + 1/2 + 1/3 + . . . + 1/n ln n
1 + 2 + 3 + . . . + n n2

1 + 2 + 4 + 8 + . . . + n = 2n − 1 n n

(n
k) nk

k!



MATHEMATICAL MODELS OF RUNNING TIME

‣ Practice Time

‣ How many array accesses does the following code make? 
        int count = 0;
        for (int i = 0; i < n; i++) {
            for (int j = i+1; j < n; j++) {
                for (int k = 1; k < n; k=k*2) {
                    if (a[i] + a[j] >= a[k]) {
                    count++;
                }
            }
        }  

A.  
B.  
C.  
D.

n2

n2 log n
n3

n3 log n

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


MATHEMATICAL MODELS OF RUNNING TIME

‣ Answer

‣ n2 log n

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction 

▸ Experimental Analysis of Running Time 

▸ Mathematical Models of Running Time 

▸ Order of Growth Classification 

▸ Analysis of Memory Consumption

25



ORDER OF GROWTH CLASSIFICATION

‣ Order-of-growth

‣ Definition: If ~  for some constant , then the order 
of growth of   is . 
‣ Ignore leading coefficients. 
‣ Ignore lower-order terms. 

‣ We will use this definition in the mathematical analysis of the 
running time of our programs as the coefficients depend on 
the system.  

‣ E.g., the order of growth of the running time of the ThreeSum 
program is .

f(n) cg(n) c > 0
f(n) g(n)

n3

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


ORDER OF GROWTH CLASSIFICATION

‣ Common order-of-growth classifications

‣ Good news: only a small number of function suffice to describe 
the order-of-growth of typical algorithms.  

‣ : constant 
‣ : logarithmic 
‣  : linear 
‣  : linearithmic 
‣ : quadratic 
‣ : cubic 
‣ : exponential 
‣ : factorial

1
log n
n
n log n
n2

n3

2n

n!

  
bigocheatsheet.com

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


ORDER OF GROWTH CLASSIFICATION

‣ Common order-of-growth classifications

  

Order-of-growth Name Typical code

Constant a=b+c

Logarithmic while(n>1){n=n/2;…} ~

Linear for(int i =0; i<n;i++{ 
…}

Linearithmic mergesort ~

Quadratic for(int i =0;i<n;i++) { 
for(int j=0; j<n;j++){…}}

Cubic
for(int i =0;i<n;i++) { 
for(int j=0; j<n;j++){ 

for(int k=0; k<n; k++){…}}}

T(n)/T(n /2)

1

log n

n

n log n

n2

n3

1

1

2

2

4

8

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction 

▸ Experimental Analysis of Running Time 

▸ Mathematical Models of Running Time 

▸ Order of Growth Classification 

▸ Analysis of Memory Consumption

29



ANALYSIS OF MEMORY CONSUMPTION

‣ Basics

‣ Bit:  or . 
‣ Byte:  bits. 
‣ Megabyte (MB):  bytes. 
‣ Gigabyte:  bytes.

0 1
8

220

230

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


ANALYSIS OF MEMORY CONSUMPTION

‣ Typical memory usage for primitives and arrays

‣ boolean:  1 byte 
‣ byte: 1 byte 
‣ char: 2 bytes 
‣ int: 4 bytes 
‣  float: 4 bytes 
‣ long: 8 bytes 
‣  double: 8 bytes 
‣ Array overhead: 24 bytes 
‣ char[]:2n+24 bytes 
‣ int[]:4n+24 bytes 
‣ double[]:8n+24 bytes

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


ANALYSIS OF MEMORY CONSUMPTION

‣ Typical memory usage for objects

‣ Object overhead: 16 bytes 
‣ Reference: 8 bytes 
‣ Padding: padded to be a multiple of 8 bytes 
‣ Example: 
‣ public class Date {  
      private int day;  
      private int month;  
      private int year;  
}

‣ 16 bytes overhead + 3x4 bytes for ints + 4 bytes padding = 
32 bytes

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


ANALYSIS OF MEMORY CONSUMPTION

‣ Practice Time

‣ How much memory does WeightedQuickUnionUF use as a function of ? 

public class WeightedQuickUnionUF{  
    private int[] parent; 
    private int[] size; 
    private int count; 

    public WeightedQuickUnionUF(int n) { 
        parent = new int[n]; 
        size = new int[n]; 
        count = 0;
…
}

A. ~  bytes 
B. ~  bytes 
C. ~  bytes 
D. ~  bytes

n

4n
8n
4n2

8n2

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


ANALYSIS OF MEMORY CONSUMPTION

‣ Answer

B. ~  bytes 

‣ 16 bytes for object overhead 
‣ Each array: 8 bytes for reference + 24 overhead + 4n for 

integers 
‣ 4 bytes for int 
‣ 4 bytes for padding 
‣ Total  ~ 

8n

88 + 8n 8n

  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 5: Analysis of Algorithms

▸ Introduction 

▸ Experimental Analysis of Running Time 

▸ Mathematical Models of Running Time 

▸ Order of Growth Classification 

▸ Analysis of Memory Consumption

35



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: 

▸ Chapter 1.4 (pages 172-196, 200-205) 

▸ Website: 

▸ Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

36

Practice Problems:

▸ 1.4.1-1.4.9

https://algs4.cs.princeton.edu/14analysis/

