CS062 DATA STRUCTURES AND ADVANCED PROGRAMMING

28: Minimum Spanning Trees

Alexandra Papoutsaki she/her/hers

Tom Yeh he/him/his

Lecture 28: Minimum Spanning Trees

Introduction

- Kruskal's Algorithm
- Prim's Algorithm

Spanning Trees

- Given an edge weighted graph G (not digraph!), a spanning tree of G is a subgraph T that is:
 - A tree: connected and acyclic.
 - ▶ Spanning: includes all of the vertices of *G*.

Properties

- A connected graph G can have more than one spanning tree.
- All possible spanning trees of G have the same number of vertices and edges.
- A spanning tree has |V| 1 edges.
- A spanning tree by definition cannot have any cycle.
- Adding one edge to the spanning tree would create a cycle (i.e. spanning trees are maximally acyclic).
- Removing one edge from the spanning tree would make the graph disconnected (i.e. spanning trees are minimally connected).

Minimum spanning tree problem

Given a connected edge-weighted undirected graph find a spanning tree of minimum weight.

An edge-weighted graph and its MST

Minimum spanning applications

- Network design
- Cluster analysis
- Cancer imaging
- Cosmology
- Weather data interpretation
- Many others
 - https://www.ics.uci.edu/~eppstein/gina/mst.html
 - https://personal.utdallas.edu/~besp/teaching/mst-applications.pdf

Lecture 28: Minimum Spanning Trees

- Introduction
- Kruskal's Algorithm
- Prim's Algorithm

Kruskal's algorithm

- Sort edges in ascending order of weight.
- Starting from the one with the smallest weight, add it to the MST T unless doing so would create a cycle.

- Uses a data structure called Union-Find (Chapter 1.5 in book).
- Running time of $|E|\log|V|$ in worst case.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

 \checkmark

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

KRUSKAL'S ALGORITHM DEMO

Consider edges in ascending order of weight.

• Add next edge to tree *T* unless doing so would create a cycle.

graph edges sorted by weight

Consider edges in ascending order of weight.

Consider edges in ascending order of weight.

• Add next edge to tree T unless doing so would create a cycle.

creates a cycle

Consider edges in ascending order of weight.

Practice Time

Answer

Lecture 28: Minimum Spanning Trees

- Introduction
- Kruskal's Algorithm
- Prim's Algorithm

Prim's algorithm

- Start with a random vertex (here, 0) and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until |V| 1 edges.

- Two versions, lazy and eager. We will see lazy, here...
- Uses min-priority queue.
- Running time of $|E|\log|V|$ in worst case, as well.

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

0-7 1-7

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

0-7 1-7 0-2

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

0-7 1-7 0-2 2-3

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.


```
MST edges
```

0-7 1-7 0-2 2-3 5-7

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.

MST edges

0-7 1-7 0-2 2-3 5-7 4-5

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.


```
MST edges
```

0-7 1-7 0-2 2-3 5-7 4-5

- Start with vertex 0 and greedily grow tree T.
- Add to *T* the min weight edge with exactly one endpoint in *T*.
- Repeat until *V* 1 edges.


```
MST edges
```

0-7 1-7 0-2 2-3 5-7 4-5 6-2

Practice Time

Answer...

Lecture 28: Minimum Spanning Trees

- Introduction
- Kruskal's Algorithm
- Prim's Algorithm

Readings:

- Textbook: Chapter 4.3 (Pages 604-629)
- Website:
 - https://algs4.cs.princeton.edu/43mst/

Practice Problems:

https://visualgo.net/en/mst

Readings:

- Textbook: Chapter 4.3 (Pages 604-629)
- Website:
 - https://algs4.cs.princeton.edu/43mst/

Practice Problems:

https://visualgo.net/en/mst