CSO62
 DATA STRUCTURES AND ADVANCED PROGRAMMING

28: Minimum Spanning Trees

Alexandra Papoutsaki she/her/hers

Tom Yeh
he/him/his

Lecture 28: Minimum Spanning Trees

- Introduction
- Kruskal's Algorithm
- Prim's Algorithm

Spanning Trees

- Given an edge weighted graph G (not digraph!), a spanning tree of G is a subgraph T that is:
- A tree: connected and acyclic.
- Spanning: includes all of the vertices of G.

Properties

- A connected graph G can have more than one spanning tree.
- All possible spanning trees of G have the same number of vertices and edges.
- A spanning tree has $|V|-1$ edges.
- A spanning tree by definition cannot have any cycle.
- Adding one edge to the spanning tree would create a cycle (i.e. spanning trees are maximally acyclic).
- Removing one edge from the spanning tree would make the graph disconnected (i.e. spanning trees are minimally connected).

Minimum spanning tree problem

- Given a connected edge-weighted undirected graph find a spanning tree of minimum weight.

Minimum spanning applications

- Network design
- Cluster analysis
- Cancer imaging
- Cosmology
- Weather data interpretation
- Many others
- https://www.ics.uci.edu/~eppstein/gina/mst.html
- https://personal.utdallas.edu/~besp/teaching/mst-applications.pdf

Lecture 28: Minimum Spanning Trees

- Introduction
, Kruskal's Algorithm
- Prim's Algorithm

Kruskal's algorithm

- Sort edges in ascending order of weight.
- Starting from the one with the smallest weight, add it to the MST T unless doing so would create a cycle.
- Uses a data structure called Union-Find (Chapter 1.5 in book).
- Running time of $|E| \log |V|$ in worst case.

Kruskal's Algorithm Demo

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.
graph edges
sorted by weight

an edge-weighted graph

	\downarrow
$0-7$	0.16
$2-3$	0.17
$1-7$	0.19
$0-2$	0.26
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.
in MST $\longrightarrow 0-7 \quad 0.16$

does not create a cycle

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo
Consider edges in ascending order of weight.

- Add next edge to tree T unless doing so would create a cycle.

Practice Time

Answer

Lecture 28: Minimum Spanning Trees

- Introduction
- Kruskal's Algorithm
- Prim's Algorithm

Prim's algorithm

- Start with a random vertex (here, 0) and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until $|V|-1$ edges.
- Two versions, lazy and eager. We will see lazy, here...
- Uses min-priority queue.
- Running time of $|E| \log |V|$ in worst case, as well.

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

an edge-weighted graph

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges
 0-7

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges
0-7 1-7

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

in MST	dges with exactly one endpoint in T sorted by weight)	
	0-2	0.26
	5-7	0.28
	1-3	0.29
	1-5	0.32
	2-7	0.34
	1-2	0.36
	4-7	0.37
	0-4	0.38
	6-0	0.58

> MST edges
> $0-7 \quad 1-7$

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges
0-7 1 1-7 0 -2

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges

$$
\begin{array}{lll}
0-7 & 1-7 & 0-2
\end{array}
$$

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges

$$
\begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
$$

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.
min weight edge with
exactly one endpoint in T

edges with exactly
one endpoint in T
(sorted by weight)

in MST \longrightarrow 5-7 0.28
1-5 0.32
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58

MST edges

$$
\begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
$$

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges
0-7 $\quad 1-7 \quad 0-2 \quad 2-3 \quad 5-7$

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

min weight edge with

 exactly one endpoint in T
edges with exactly
one endpoint in T
(sorted by weight)

$$
\text { in MST } \longrightarrow \begin{array}{cc}
4-5 & 0.35 \\
4-7 & 0.37 \\
& 0-4 \\
& 0.38 \\
6-2 & 0.40 \\
3-6 & 0.52 \\
6-0 & 0.58
\end{array}
$$

MST edges

$$
\begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
$$

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges
0-7 $\quad 1-7 \quad 0-2 \quad 2-3 \quad 5-7 \quad 4-5$

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges

$$
\begin{array}{llllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
$$

Prim's algorithm demo

- Start with vertex 0 and greedily grow tree T.
- Add to T the min weight edge with exactly one endpoint in T.
- Repeat until V - 1 edges.

MST edges
0-7 $\quad 1-7 \quad 0-2 \quad 2-3 \quad 5-7 \quad 4-5 \quad 6-2$

Practice Time

Answer...

Lecture 28: Minimum Spanning Trees

- Introduction
- Kruskal's Algorithm
- Prim's Algorithm

Readings:

- Textbook: Chapter 4.3 (Pages 604-629)
, Website:
- https://algs4.cs.princeton.edu/43mst/

Practice Problems:

https://visualgo.net/en/mst

Readings:

- Textbook: Chapter 4.3 (Pages 604-629)
, Website:
- https://algs4.cs.princeton.edu/43mst/

Practice Problems:

https://visualgo.net/en/mst

