
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

22: HashTables, Undirected Graphs

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki
she/her/hers

Tom Yeh
he/him/his

TEXT

Assignment 6 and 7 due today

2

TODAY’S LECTURE IN A NUTSHELL

Lecture 22: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

3

Some slides adopted from Algorithms 4th Edition or COS226

PERFORMANCE

Summary for symbol table operations - can we do better?

4

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered
Binary search

(ordered
array)

BST

2-3 search
tree

Red-black
BSTs

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n ?

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

HASHING: REDUCE SYMBOL TABLE TO AN ARRAY

Dictionaries with O(1) search using hashing

▸ Goal: Build a key-indexed array to model dictionaries for efficient
(search).

▸ Index is a function of the key

▸ Hash function: Method for computing array index from key.

▸ 2 steps: hash code, hash value (index)

▸ Issues:

▸ Computing the hash function.

▸ Equality test: checking whether two keys are equal.

▸ Collision resolution Trade off between time and space

▸ Space-time tradeoff: key as unique index vs all items to 1 index

O(1)

5

0

1

2

3

4

HASHING

Computing hash function

▸ Ideal scenario: Scramble the keys uniformly to produce a dictionary index.

▸ Requirements:

▸ Consistent - equal keys must produce the same hash value.

▸ Efficient - quick computation of hash value.

▸ Uniform distribution - every index is equally likely for each key.

▸ Problematic in practical applications.

▸ Examples: Dictionary where keys are social security numbers.

▸ Keys are phone numbers, names, schools

▸ Practical challenge: Need different approach for each key type.

6

HASHING

Hashing in Java

▸ All Java classes inherit a method hashCode(), which returns an 32-bit
integer.

▸ Requirement: If x.equals(y) then x.hashCode()==y.hashCode().

▸ Ideally: If !x.equals(y) then x.hashCode()!=y.hashCode().

▸ Default implementation: Memory address of x.

▸ Need to override both equals() and hashCode() for custom
types.

▸ Already customized for us for standard data types: Integer,
Double, String.

7

HASHING: JAVA LIBRARY IMPLEMENTATIONS OF PRIMITIVES

Java implementations of hashCode()

▸ public final class Integer {  
 private final int value;  
 …  
 public int hashCode() {  
 return (value); // just return the value  
 }  
}

▸ public final class Boolean {  
 private final boolean value;  
 …  
 public int hashCode() {  
 if(value) return 1231; // return 2 values (true/false)  
 else return 1237;  
 }  
}

8

HASHING

Java implementations of equals() for user-defined types

▸ public class Date {  
 private int month;  
 private int day;  
 private int year;  
 …  
 public boolean equals(Object y) {  
 if (y == this) return true; // same memory location  
 if (y == null) return false; // compare with null  
 if (y.getClass() != this.getClass()) return false;  
 Date that = (Date) y; // same object type  
 return (this.day == that.day &&  
 this.month == that.month &&  
 this.year == that.year); // compare 3 ints  
 }  
}

9

HASHING

General hash code recipe in Java

▸ Combine each significant field using the 31x+y rule.

▸ Shortcut 1: use Objects.hash() for all fields (except arrays).

▸ Shortcut 2: use Arrays.hashCode() for primitive arrays.

▸ Shortcut 3: use Arrays.deepHashCode() for object arrays.

10

HASHING: MAKE USE OF ALL THE DATA WE HAVE

Java implementations of hashCode() for user-defined types

▸ public class Date {  
 private int month;  
 private int day;  
 private int year;  
 …  
 public int hashCode() {  
 int hash = 1;  
 hash = 31*hash + ((Integer) month).hashCode();  
 hash = 31*hash + ((Integer) day).hashCode();  
 hash = 31*hash + ((Integer) year).hashCode();  
 return hash;  
 //could be also written as  
 //return Objects.hash(month, day, year); 
 }  
}

11

31x+y rule

HASHING

Modular hashing

▸ Hash code: a 32-bit int can be negative (between and)

▸ Hash function: need an int for the index (between 0 and), where is the hash table size

▸ The class that implements the dictionary of size should implement a hash function. Examples:

▸ private int hash (Key key){  
 return key.hashCode() % m;  
}

▸ Bug! Might map to negative number.

▸ private int hash (Key key){  
 return Math.abs(key.hashCode()) % m;  
}

▸ Close

▸ private int hash (Key key){  
 return (key.hashCode() & 0x7fffffff) % m; // make hashcode positive  
}

▸

−231 231 − 1

m − 1 m

m

12

HASHING

Uniform hashing assumption

▸ Uniform hashing assumption: Each key is equally likely to
hash to an integer between and .

▸ Mathematical model: balls & bins. Toss balls uniformly at
random into bins.

▸ Good news: load balancing

▸ When , the number of balls in each bin is “likely
close” to .

▸ Need to handle collisions

0 m − 1

n
m

n > > m
n/m

13

TODAY’S LECTURE IN A NUTSHELL

Lecture 26-27: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

14

SEPARATE CHAINING - COLLISION RESOLUTION

Separate/External Chaining (Closed Addressing)

▸ Use an array of distinct lists
[H.P. Luhn, IBM 1953].

▸ Hash: Map key to integer between and
.

▸ Insert: Put at front of i-th chain (if not
already there).

▸ Search: Need to only search the i-th chain.

m < n

i 0
m − 1

15

SEPARATE CHAINING

Separate Chaining Example

16

0

1

2

3

4

Next step: Insert (S, 0)

SEPARATE CHAINING

Separate Chaining Example

17

Key Hash Value

S 2 0
0

1

2 S, 0

3

4

Next step: Insert (E, 1)

SEPARATE CHAINING

Separate Chaining Example

18

Key Hash Value

S 2 0
E 0 1

0 E, 1

1

2 S, 0

3

4

Next step: Insert (A, 2)

SEPARATE CHAINING

Separate Chaining Example

19

Key Hash Value
S 2 0
E 0 1
A 0 2

0 A, 2 E, 1

1

2 S, 0

3

4

Next step: Insert (R, 3)

SEPARATE CHAINING

Separate Chaining Example

20

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3

0 A, 2 E, 1

1

2 S, 0

3

4 R, 3

Next step: Insert (C, 4)

SEPARATE CHAINING

Separate Chaining Example

21

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4

0 A, 2 E, 1

1

2 S, 0

3

4 C, 4 R, 3

Next step: Insert (H, 5)

SEPARATE CHAINING

Separate Chaining Example

22

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5

0 A, 2 E, 1

1

2 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (E, 6)

SEPARATE CHAINING

Separate Chaining Example

23

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6

0 A, 2 E, 6

1

2 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (X, 7)

SEPARATE CHAINING

Separate Chaining Example

24

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7

0 A, 2 E, 6

1

2 X, 7 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (A, 8)

SEPARATE CHAINING

Separate Chaining Example

25

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8

0 A, 8 E, 6

1

2 X, 7 S, 0

3

4 H, 5 C, 4 R, 3

Next step: Insert (M, 9)

SEPARATE CHAINING

Separate Chaining Example

26

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9

0 A, 8 E, 6

1

2 X, 7 S, 0

3

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (P, 10)

SEPARATE CHAINING

Separate Chaining Example

27

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10

0 A, 8 E, 6

1

2 X, 7 S, 0

3 P, 10

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (L, 11)

SEPARATE CHAINING

Separate Chaining Example

28

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10
L 3 11

0 A, 8 E, 6

1

2 X, 7 S, 0

3 L, 11 P, 10

4 M, 9 H, 5 C, 4 R, 3

Next step: Insert (E, 12)

SEPARATE CHAINING

Separate Chaining Example

29

Key Hash Value
S 2 0
E 0 1
A 0 2
R 4 3
C 4 4
H 4 5
E 0 6
X 2 7
A 0 8
M 4 9
P 3 10
L 3 11
E 0 12

0 A, 8 E, 12

1

2 X, 7 S, 0

3 L, 11 P, 10

4 M, 9 H, 5 C, 4 R, 3

SEPARATE CHAINING

Practice Time

30

▸ Assume a dictionary implemented using hashing and separate
chaining for handling collisions.

▸ Let be the hash table size.

▸ For simplicity, we will assume that keys are integers, hash code
is just the key, and that the hash value for each key is
calculated as .

▸ Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4),
(47,5) and show the resulting dictionary.

m = 7

k
h(k) = k % m

0 14, 3 28, 2

1

2 9, 4

3 3, 1

4

5 47, 5

6

SEPARATE CHAINING

Answer

31

Key Hash Value

47 5 0

3 3 1

28 0 2

14 0 3

9 2 4

47 5 5

SEPARATE CHAINING

Symbol table with separate chaining implementation
public class SeparateChainingLiteHashST<Key, Value> {

 private int m = 128; // hash table size
 private Node[] st = new Node[m];  
 // array of linked-list symbol tables. Node is inner class that holds keys and values of type Object 

 public Value get(Key key) { // hash is a private method to return hashcode
 int i = hash(key); // compute hash value - bitwise & and mod
 for (Node x = st[i]; x != null; x = x.next) { // traverse linked list - start at hash index i  
 if (key.equals(x.key)) return (Value) x.val; // return when found
 }  
 return null;
 }  
 
 public void put(Key key, Value val) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next) { // search for existing node, if found update  
 if (key.equals(x.key)) { // start at hash index i  
 x.val = val;  
 return;
 }  
 }  
 st[i] = new Node(key, val, st[i]; // create new node at head of linked list
 } // link to old head of list

32

SEPARATE CHAINING

Analysis of Separate Chaining

▸ Under uniform hashing assumption, with keys and a table of
size, the length of each chain is ~ .

▸ Consequence: Number of probes for search/insert is O(1) and
proportional to

▸ too large -> too many empty chains.

▸ too small -> chains too long.

▸ Typical choice: ~ -> constant time per operation.

n
n/m

n/m

m

m

m 1/5n

33

SEPARATE CHAINING

Resizing in a separate-chaining hash table

▸ Goal: Average length of chain = constant lookup.

▸ Double hash table size when .

▸ Halve hash table size when .

▸ Need to rehash all keys when resizing (hashCode value for
key does not change, but hash value changes as it
depends on table size). Look at example

n/m

n/m ≥ 8

n/m ≤ 2

34

SEPARATE CHAINING

Parting thoughts about separate-chaining

▸ Deletion: Easy! Hash key, find its chain, search for a node that
contains it and remove it.

▸ Ordered operations: not supported. Instead, look into
(balanced) BSTs.

▸ Fastest and most widely used dictionary implementation for
applications where key order is not important.

35

TEXT 36

TODAY’S LECTURE IN A NUTSHELL

Lecture 26-27: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

37

OPEN ADDRESSING: COLLISION RESOLUTION USING AN ARRAY

Linear Probing

▸ Alternate collision resolution when table size >
number of keys ().

▸ Maintain keys and values in two parallel arrays.

▸ When a new key collides, find next empty slot
and put it there.

▸ If the array is full, the search would not
terminate.

m > n

38

OPEN ADDRESSING

Linear Probing

▸ Hash: Map key to integer between and .

▸ Insert: Put at index if free. If not, try , , etc.

▸ Search: Search table index . If occupied but no match, try , , etc

▸ If you find a gap then you know that it does not exist.

▸ Table size must be greater than the number of key-value pairs .

i 0 m − 1

i i + 1 i + 2

i i + 1 i + 2

m n

39

TEXT 40

OPEN ADDRESSING

Linear Probing Example

41

OPEN ADDRESSING

Practice time

42

▸ Assume a dictionary implemented using hashing and linear
probing for handling collisions.

▸ Let be the hash table size.

▸ For simplicity, we will assume that keys are integers, hash code
is just the integer, and that the hash value for each key is
calculated as .

▸ Insert the key-value pairs (47, 0), (3, 1), (28, 2), (14, 3), (9,4),
(47,5) and show the resulting dictionary.

m = 7

k
h(k) = k % m

Keys 28 14 9 3 47

Values 2 3 2 1 5

Indices 0 1 2 3 4 5 6

OPEN ADDRESSING

Answer

43

Key Hash Value
47 5 0
3 3 1

28 0 2
14 0 3
9 2 4

47 5 5

OPEN ADDRESSING

Symbol table with linear probing implementation

public class LinearProbingHashST<Key, Value> {

 private int m = 32768; // hash table size
 private Value[] Vals = (Value[]) new Object[m]; // parallel arrays  
 private Key[] Vals = (Key[]) new Object[m];
  
 public Value get(Key key) {
 for (int i = hash(key); keys[i] != null; i = (i+1) % m) { // start at hash  
 if (key.equals(keys[i])) return vals[i]; // increment by 1, wrap
 }  
 return null;
 }  
 
 public void put(Key key, Value val) {
 int i;
 for (int i = hash(key); keys[i] != null; i = (i+1) % m) { // start at hash  
 if (key.equals(keys[i])){ // increment by 1, wrap  
 break;
 }  
 }  
 keys[i] = key;  
 vals[i] = val;
 }

44

OPEN ADDRESSING

Primary clustering

▸ Cluster: a contiguous block of keys.

▸ Observation: new keys likely to hash in middle of big clusters.

▸ What happens to time complexity for search and insert?

45

OPEN ADDRESSING

Analysis of Linear Probing

▸ Proposition: Under uniform hashing assumption, the average number of probes in a linear-probing
hash table of size that contains n keys where is at most (alpha is the ratio of n/m)

▸ for search hits and

▸ for search misses and insertions.

▸ [Knuth 1963], < 1 what happens when alpha is 1/2? Close to 1 say 0.9?

▸ Parameters:

▸ too large -> too many empty array entries.

▸ too small -> search time becomes too long.

▸ Typical choice for load factor: ~ -> constant time per operation.

m n = αm

1/2(1 +
1

1 − a
)

1/2(1 +
1

(1 − a)2
)

α

m

m

α = n /m 1/2

46

OPEN ADDRESSING

Resizing in a linear probing hash table

▸ Goal: Fullness of array (load factor) .

▸ Double hash table size when .

▸ Halve hash table size when .

▸ Need to rehash all keys when resizing (hash code does not
change, but hash value changes as it depends on table size).

▸ Deletion not straightforward. Why?

▸ Find, remove, reinsert all subsequent key-value pairs in cluster

n/m ≤ 1/2

n/m ≥ 1/2

n/m ≤ 1/8

47

TEXT 48

TEXT

▸ Liner probing - less wasted space if the hashing function is not very good

▸ Linear probing - better cache performance because of the use of an array
instead of chasing pointers

49

OPEN ADDRESSING

Quadratic Probing

▸ Another open addressing technique that aims to reduce primary
clustering by taking the original hash index and adding
successive values of an arbitrary quadratic polynomial until an
open slot is found.

▸ Modify the probe sequence so that
, where

▸ is the -th time we have had a collision for the given index.

▸ When , then quadratic probing reduces to linear
probing.

h(k, i) = (h(k) + c1i + c2i2) % m, c2 ≠ 0

i i

c2 = 0

50

OPEN ADDRESSING

Quadratic probing - Example

▸ and .

▸ Assume , and key-value pairs to insert: (17,0), (33,1),
(18,2), (20,3), (44,4), (11,5), (19,6), (7,7).

h(k) = k % m h(k, i) = (h(k) + i2) % m

m = 13

51

0 1 2 3 4 5 6 7 8 9 10 11 12

17

17 33

17 18 33

17 18 33 20 Collision!

17 18 44 33 20 Collision!

17 18 44 33 20 11

17 18 44 33 20 19 11 Collision!

7 17 18 44 33 20 19 11

(17,0)

(33,1)

(18,2)

(20,3)

(44,4)

(11,5)

(19,6)

(7,7) Collision!

OPEN ADDRESSING

Summary for dictionary/symbol table operations

52

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search tree

Separate
chaining

Open
addressing

n n n log n

n n n 1

log n log n

11

n n n 111

log n log n log nlog n log n log n

OPEN ADDRESSING

Hash tables vs balanced search trees

▸ Hash tables:

▸ Simpler to code.

▸ No effective alternative of unordered keys.

▸ Faster for simple keys (a few arithmetic operations versus compares).

▸ Balanced search trees:

▸ Stronger performance guarantee.

▸ Support for ordered symbol table operations.

▸ Easier to implement compareTo() than hashCode().

▸ Java includes both:

▸ Balanced search trees: java.util.TreeMap, java.util.TreeSet.

▸ Hash tables: java.util.HashMap, java.util.IdentityHashMap.

log n

53

TODAY’S LECTURE IN A NUTSHELL

Lecture 26-27: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Open addressing

54

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.4 (Pages 458-477)

▸ Website:

▸ https://algs4.cs.princeton.edu/34hash/

▸ Visualization:

▸ https://visualgo.net/en/hashtable

55

Practice Problems:

▸ 3.4.1-3.4.13

https://algs4.cs.princeton.edu/34hash/
https://visualgo.net/en/hashtable?slide=1

TODAY’S LECTURE IN A NUTSHELL

Intro to Undirected Graphs

▸ Undirected Graphs

56

Some slides adopted from Algorithms 4th Edition or COS226

UNDIRECTED GRAPHS

Graphs

▸ Graphs: mathematical abstractions that model a set of
vertices connected pairwise by edges.

▸ Why study graphs?

▸ Thousands of practical applications.

▸ Hundreds of graph algorithms.

▸ Interesting and widely applicable abstraction.

▸ Core branch of computer science and discrete math.

57

UNDIRECTED GRAPHS

Example: (Fake) LA subway map

▸ Vertices: stations.
Edges: route.

▸ Source: LA Weekly

58

UNDIRECTED GRAPHS

Example: Social networks

▸ Vertices: people. Edges: “friendships”.
Source: Paul Butler

59

UNDIRECTED GRAPHS

Example: Protein-protein networks

▸ Vertices: proteins.

▸ Edges: interactions.

▸ Source: Macmillan Magazines Ltd.

60

UNDIRECTED GRAPHS

Graph Applications

61

Graph Vertex Edge

Communication Telephone, computer Cable

Circuit Gate, register, processor Wire

Financial Stock Transaction

Transportation Intersection Street

Game Board Legal move

Neural network Neuron Synapse

Molecule Atom Bond

Schedule Job Constraint

UNDIRECTED GRAPHS

Graph Terminology

▸ Graph: set of vertices V connected pairwise by a set of edges E.

▸ E.g., V = {A, B, C, D}, E = {{A,B}, {A,C}, {A,D}, {B,D}}.

▸ Path: sequence of vertices connected by edges, with no repeated edges.

▸ A simple path is a path with no repeated vertices.

▸ Cycle: Path with at least one edge whose first and last vertices are the
same.

▸ A simple cycle is a cycle with no repeated vertices (other than the first
and last).

▸ The length of a cycle or a path is its number of edges.

62A B

DC

UNDIRECTED GRAPHS

Graph Terminology

▸ Self-loop: an edge that connects a vertex to itself.

▸ Two vertices are connected if there is a path between them.

▸ Two edges are parallel if they connect the same pair of vertices.

▸ When an edge connects two vertices, we say that the vertices are
adjacent to one another and that the edge is incident on both vertices.

▸ The degree of a vertex is the number of edges incident on it.

▸ A subgraph of a graph is a subset of a graph’s edges and their
associated vertices.

63A B

DC

UNDIRECTED GRAPHS

Graph Terminology

▸ A graph is connected if there is a path from every vertex to
every other vertex.

▸ A graph that is not connected consists of a set of connected
components, which are maximal connected subgraphs.

▸ An acyclic graph is a graph with no cycles.

▸ A tree is an acyclic connected graph.

▸ A forest is a disjoint set of trees.

64A B

DC

UNDIRECTED GRAPHS

Graph Terminology

65

UNDIRECTED GRAPHS

Popular graph problems

66

Problem Description

s-t path Is there a path between s and t?

Shortest s-t path What is the shortest path between s and t?

Cycle Is there a cycle in the graph?

Euler cycle Is there a cycle that uses each edge exactly once?

Hamilton cycle Is there a cycle that uses each vertex exactly once?

Connectivity Is there a path between every pair of vertices?

Biconnectivity Is there an vertex whose removal disconnects the graph?

TODAY’S LECTURE IN A NUTSHELL

Lecture 33: Intro to Undirected Graphs

▸ Undirected Graphs

67

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 4.1 (Pages 515-521)

▸ Website:

▸ https://algs4.cs.princeton.edu/41graph/

68

https://algs4.cs.princeton.edu/41graph/

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

69

Some slides adopted from Algorithms 4th Edition or COS226

UNDIRECTED GRAPHS

Graph representation

▸ Vertex representation: Here, integers between 0 and V-1.

▸ We will use a symbol table to map between names and
integers.

70

UNDIRECTED GRAPHS

Basic Graph API

▸ public class Graph

▸ Graph(int V): create an empty graph with V vertices.

▸ void addEdge(int v, int w): add an edge v-w.

▸ Iterable<Integer> adj(int v): return vertices
adjacent to v.

▸ int V(): number of vertices.

▸ int E(): number of edges.

71

UNDIRECTED GRAPHS

Example of how to use the Graph API to process the graph

▸ public static int degree(Graph g, int v){  
 int count = 0;  
 for(int w : g.adj(v))  
 count++;  
 return count;  
}

72

UNDIRECTED GRAPHS

Graph density

▸ In a simple graph (no parallel edges or loops), if , then:

▸ minimum number of edges is 0 and

▸ maximum number of edges is .

▸ Dense graph -> edges closer to maximum.

▸ Sparse graph -> edges closer to minimum.

|V | = n

n(n − 1)/2

73

UNDIRECTED GRAPHS

Graph representation: adjacency matrix

▸ Maintain a -by- boolean array;
for each edge v-w:

▸ adj[v][w] = adj[w][v] = true; (1).

▸ Good for dense graphs (edges close to).

▸ Constant time for lookup of an edge.

▸ Constant time for adding an edge.

▸ time for iterating over vertices adjacent to .

▸ Symmetric, therefore wastes space in undirected
graphs ().

▸ Not widely used in practice.

|V | |V |

|V |2

|V | v

|V |2

74

A B C D

A 0 1 1 1

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

A B

DC

UNDIRECTED GRAPHS

Graph representation: adjacency list

▸ Maintain vertex-indexed array of lists.

▸ Good for sparse graphs (edges proportional to
) which are much more common in the real

world.

▸ Algorithms based on iterating over vertices
adjacent to .

▸ Space efficient ().

▸ Constant time for adding an edge.

▸ Lookup of an edge or iterating over vertices
adjacent to is .

|V |

v

|E | + |V |

v degree(v)

75

UNDIRECTED GRAPHS

Adjacency-list graph representation in Java

public class Graph {

 private final int V;
 private int E;
 private Bag<Integer>[] adj;

 //Initializes an empty graph with V vertices and 0 edges.
 public Graph(int V) {
 this.V = V;
 this.E = 0;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++) {
 adj[v] = new Bag<Integer>();
 }
 }

 //Adds the undirected edge v-w to this graph. Parallel edges and self-loops allowed
 public void addEdge(int v, int w) {
 E++;
 adj[v].add(w);
 adj[w].add(v);
 }

 //Returns the vertices adjacent to vertex v.
 public Iterable<Integer> adj(int v) {
 return adj[v];
 }

76

A bag is a collection where removing items is not supported—its purpose is to provide clients with the ability to collect items and then to iterate
through the collected items

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

77

DEPTH-FIRST SEARCH

Mazes as graphs

▸ Vertex = intersection; edge = passage

78

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

DEPTH-FIRST SEARCH

How to survive a maze: a lesson from a Greek myth

▸ Theseus escaped from the labyrinth after killing the Minotaur with the following
strategy instructed by Ariadne:

▸ Unroll a ball of string behind you.

▸ Mark each newly discovered intersection.

▸ Retrace steps when no unmarked options.

▸ Also known as the Trémaux algorithm.

79

DEPTH-FIRST SEARCH

Depth-first search

▸ Goal: Systematically traverse a graph.

▸ DFS (to visit a vertex v)

▸ Mark vertex v.

▸ Recursively visit all unmarked vertices w adjacent to v.

▸ Typical applications:

▸ Find all vertices connected to a given vertex.

▸ Find a path between two vertices.

80

DEPTH-FIRST SEARCH

Depth-first search

81

DEPTH-FIRST SEARCH

Depth-first search

▸ Goal: Find all vertices connected to s (and a corresponding path).

▸ Idea: Mimic maze exploration.

▸ Algorithm:

▸ Use recursion (ball of string).

▸ Mark each visited vertex (and keep track of edge taken to visit it).

▸ Return (retrace steps) when no unvisited options.

▸ When started at vertex s, DFS marks all vertices connected to s (and no other).

82

DEPTH-FIRST SEARCH

Depth-first search in Java

public class DepthFirstSearch {
 private boolean[] marked; // marked[v] = is there an s-v path?
 private int[] edgeTo; // edgeTo[v] = previous vertex on path from s to v  

 public DepthFirstSearch(Graph G, int s) {
 marked = new boolean[G.V()];
 edgeTo = new int[G.V()];
 dfs(G, s);
 }

 // depth first search from v
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 }

83

DEPTH-FIRST SEARCH

Depth-first search Analysis

▸ DFS marks all vertices connected to s in time proportional to
 in the worst case.

▸ Initializing arrays marked and edgeTo takes time proportional to
.

▸ Each adjacency-list entry is examined exactly once and there are
 such edges (two for each edge).

▸ Once we run DFS, we can check if vertex v is connected to s in
constant time. We can also find the v-s path (if it exists) in time
proportional to its length.

|V | + |E |

|V |

2E

84

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

85

BREADTH-FIRST SEARCH

Breadth-first search

▸ BFS (from source vertex s)

▸ Put s on a queue and mark it as visited.

▸ Repeat until the queue is empty:

▸ Dequeue vertex v.

▸ Enqueue each of v’s unmarked neighbors and mark them.

▸ Basic idea: BFS traverses vertices in order of distance from s.

86

87

BREADTH-FIRST SEARCH

Breadth-first search in Java

public class BreadthFirstPaths {
 private boolean[] marked; // marked[v] = is there an s-v path
 private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
 private int[] distTo; // distTo[v] = number of edges shortest s-v path

 public BreadthFirstPaths(Graph G, int s) {
 marked = new boolean[G.V()];
 distTo = new int[G.V()];
 edgeTo = new int[G.V()];
 bfs(G, s);
 }

 private void bfs(Graph G, int s) {
 Queue<Integer> q = new Queue<Integer>();
 distTo[s] = 0;
 marked[s] = true;
 q.enqueue(s);

 while (!q.isEmpty()) {
 int v = q.dequeue();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 distTo[w] = distTo[v] + 1;
 marked[w] = true;
 q.enqueue(w);
 }
 }
 }
 }

88

BREADTH-FIRST SEARCH

Breadth-first search

▸ DFS: Put unvisited vertices on a stack.

▸ BFS: Put unvisited vertices on a queue.

▸ Shortest path problem: Find path from s to t that uses the fewest number of edges.

▸ E.g., calculate the fewest numbers of hops in a communication network.

▸ E.g., calculate the Kevin Bacon number or Erdös number.

▸ BFS computes shortest paths from s to all vertices in a graph in time proportional to

▸ The queue always consists of zero or more vertices of distance k from s, followed
by zero or more vertices of k+1.

|E | + |V |

89

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

90

CONNECTED COMPONENTS

Connectivity queries

▸ Goal: Preprocess graph to answer questions of the form “is v
connected to w” in constant time.

▸ public class CC

▸ CC(Graph G): find connected components in G.

▸ boolean connected(int v, int w): are v and w connected?

▸ int count(): number of connected components.

▸ int id(int v): component identifier for vertex v.

91

CONNECTED COMPONENTS

Connected components

▸ Goal: Partition vertices into connected components.

▸ Connected Components

▸ Initialize all vertices as unmarked.

▸ For each unmarked vertex, run DFS to identify all vertices discovered as part of the
same component.

92

CONNECTED COMPONENTS

Connected components

▸ Goal: Partition vertices into connected components.

▸ Connected Components

▸ Initialize all vertices as unmarked.

▸ For each unmarked vertex, run DFS to identify all vertices discovered as part of the
same component.

93

CONNECTED COMPONENTS

Connected Components in Java

public class CC {
 private boolean[] marked; // marked[v] = has vertex v been marked?
 private int[] id; // id[v] = id of connected component containing v
 private int[] size; // size[id] = number of vertices in given component
 private int count; // number of connected components

 public CC(Graph G) {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 size = new int[G.V()];
 for (int v = 0; v < G.V(); v++) {
 if (!marked[v]) {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Graph G, int v) {
 marked[v] = true;
 id[v] = count;
 size[count]++;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 dfs(G, w);
 }
 }
 }

94

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

95

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 4.1 (Pages 522-556)

▸ Website:

▸ https://algs4.cs.princeton.edu/41graph/

96

Practice Problems:

▸ 4.1.1-4.1.6, 4.1.9, 4.1.11

https://algs4.cs.princeton.edu/41graph/

