# CSO62 <br> DATA STRUCTURES AND ADVANCED PROGRAMMING 

22: HashTables, Undirected Graphs

Alexandra Papoutsaki she/her/hers

Tom Yeh he/him/his

Assignment 6 and 7 due today

## Lecture 22: Hash tables

- Hash functions
- Separate chaining
- Open addressing


## Summary for symbol table operations - can we do better?

|  | Worst case |  |  | Average case |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Search | Insert | Delete | Search | Insert | Delete |
| Sequential <br> search <br> (unordered | $n$ | $n$ | $n$ | $n / 2$ | $n$ | $n / 2$ |
| Binary search <br> (ordered <br> array) | $\log n$ | $n$ | $n$ | $\log n$ | $n / 2$ | $n / 2$ |
| BST | $n$ | $n$ | $n$ | $1.39 \log n$ | $1.39 \log n$ | $?$ |
| 2-3 search <br> tree | $c \log n$ |
| Red-black <br> BSTs | $2 \log n$ | $2 \log n$ | $2 \log n$ | $1 \log n$ | $1 \log n$ | $1 \log n$ |

## Dictionaries with $\mathrm{O}(1)$ search using hashing

- Goal: Build a key-indexed array to model dictionaries for efficient ( $O(1)$ search).
- Index is a function of the key
- Hash function: Method for computing array index from key.
- 2 steps: hash code, hash value (index)
- Issues:
- Computing the hash function.
- Equality test: checking whether two keys are equal.
- Collision resolution Trade off between time and space
- Space-time tradeoff: key as unique index vs all items to 1 index


## Computing hash function

- Ideal scenario: Scramble the keys uniformly to produce a dictionary index.
- Requirements:
- Consistent - equal keys must produce the same hash value.
- Efficient - quick computation of hash value.
- Uniform distribution - every index is equally likely for each key.
- Problematic in practical applications.

- Examples: Dictionary where keys are social security numbers.
- Keys are phone numbers, names, schools
- Practical challenge: Need different approach for each key type.


## Hashing in Java

- All Java classes inherit a method hashCode(), which returns an 32-bit integer.
- Requirement: If $x$.equals( $y$ ) then $x$.hashCode()==y.hashCode().
- Ideally: If !x.equals(y) then $x . h a s h C o d e()!=y . h a s h C o d e()$.
- Default implementation: Memory address of $x$.
- Need to override both equals() and hashCode() for custom types.
- Already customized for us for standard data types: Integer, Double, String.


## Java implementations of hashCode()

```
p public final class Integer {
        private final int value;
        public int hashCode() {
        return (value); // just return the value
    }
    }
p public final class Boolean {
    private final boolean value;
        public int hashCode() {
        if(value) return 1231; // return 2 values (true/false)
        else return 1237;
        }
    }
```


## Java implementations of equals() for user-defined types

, public class Date \{ private int month; private int day; private int year;
public boolean equals(Object y) \{ if ( $y==$ this) return true; // same memory location if (y == null) return false; // compare with null
if (y.getClass() != this.getClass()) return false; Date that = (Date) y; // same object type return (this.day == that.day \&\& this.month == that.month \&\& this.year == that.year); // compare 3 ints
\}
\}

## General hash code recipe in Java

- Combine each significant field using the $31 \mathrm{x}+\mathrm{y}$ rule.
- Shortcut 1: use Objects . hash() for all fields (except arrays).
- Shortcut 2: use Arrays . hashCode() for primitive arrays.
- Shortcut 3: use Arrays. deepHashCode() for object arrays.


## Java implementations of hashCode() for user-defined types

, public class Date \{
private int month;
private int day;
private int year;
public int hashCode() \{
int hash = 1; hash $=31^{*}$ hash + ((Integer) month).hashCode(); hash $=31 *$ hash + ((Integer) day).hashCode(); hash = 31*hash + ((Integer) year).hashCode(); return hash;
//could be also written as //return Objects.hash(month, day, year);
\}

## Modular hashing

- Hash code: a 32 -bit int can be negative (between $-2^{31}$ and $2^{31}-1$ )
- Hash function: need an int for the index (between 0 and $m-1$ ), where $m$ is the hash table size
- The class that implements the dictionary of size $m$ should implement a hash function. Examples:
p private int hash (Key key)\{ return key.hashCode() \% m;
\}
- Bug! Might map to negative number.
p private int hash (Key key)\{ return Math.abs(key.hashCode()) \% m;
\}
- Close
p private int hash (Key key)\{ return (key.hashCode() \& 0x7fffffff) \% m; // make hashcode positive \}


## Uniform hashing assumption



- Uniform hashing assumption: Each key is equally likely to hash to an integer between 0 and $m-1$.
- Mathematical model: balls \& bins. Toss $n$ balls uniformly at random into $m$ bins.
- Good news: load balancing
- When $n \gg m$, the number of balls in each bin is "likely close" to $n / m$.
- Need to handle collisions


## Lecture 26-27: Hash tables

- Hash functions
- Separate chaining

Open addressing

## Separate/External Chaining (Closed Addressing)

- Use an array of $m<n$ distinct lists [H.P. Luhn, IBM 1953].
- Hash: Map key to integer $i$ between 0 and $m-1$.
- Insert: Put at front of i-th chain (if not already there).
( Search: Need to only search the i-th chain.


L 311
E 012
Hashing with separate chaining for standard indexing client

## Separate Chaining Example



Next step: Insert (S, 0)

## Separate Chaining Example



Next step: Insert (E, 1)

## Separate Chaining Example



Next step: Insert (A, 2)

## Separate Chaining Example



## Separate Chaining Example



## Separate Chaining Example



## Separate Chaining Example



Next step: Insert (E, 6)

## Separate Chaining Example



Next step: Insert (X, 7)

## Separate Chaining Example



## Separate Chaining Example



## Separate Chaining Example

| Key | Hash | Value |
| :---: | :---: | :---: |
| S | 2 | 0 |
| E | 0 | 1 |
| A | 0 | 2 |
| R | 4 | 3 |
| C | 4 | 4 |
| H | 4 | 5 |
| E | 0 | 6 |
| X | 2 | 7 |
| A | 0 | 8 |
| M | 4 | 9 |



Next step: Insert (P, 10)

## Separate Chaining Example



## Separate Chaining Example

| Key | Hash | Value |
| :---: | :---: | :---: |
| S | 2 | 0 |
| E | 0 | 1 |
| A | 0 | 2 |
| R | 4 | 3 |
| C | 4 | 4 |
| H | 4 | 5 |
| E | 0 | 6 |
| X | 2 | 7 |
| A | 0 | 8 |
| M | 4 | 9 |
| P | 3 | 10 |
| L | 3 | 11 |



Next step: Insert (E, 12)

## Separate Chaining Example



## Practice Time

- Assume a dictionary implemented using hashing and separate chaining for handling collisions.
- Let $m=7$ be the hash table size.
- For simplicity, we will assume that keys are integers, hash code is just the key, and that the hash value for each key $k$ is calculated as $h(k)=k \% m$.
- Insert the key-value pairs (47, 0), $(3,1),(28,2),(14,3),(9,4)$, $(47,5)$ and show the resulting dictionary.

Answer


## Symbol table with separate chaining implementation

```
public class SeparateChainingLiteHashST<Key, Value> {
private int m = 128; // hash table size
private Node[] st = new Node[m];
// array of linked-list symbol tables. Node is inner class that holds keys and values of type Object
public Value get(Key key) { // hash is a private method to return hashcode
    int i = hash(key);
// compute hash value - bitwise & and mod
    for (Node x = st[i]; x != null; x = x.next) { // traverse linked list - start at hash index i
        if (key.equals(x.key)) return (Value) x.val; // return when found
    }
    return null;
}
public void put(Key key, Value val) {
    int i = hash(key);
    for (Node x = st[i]; x != null; x = x.next) { // search for existing node, if found update
        if (key.equals(x.key)) {
        // start at hash index i
            x.val = val;
            return;
        }
    }
    st[i] = new Node(key, val, st[i]; // create new node at head of linked list
}
// link to old head of list
```

Analysis of Separate Chaining

- Under uniform hashing assumption, with $n$ keys and a table of size, the length of each chain is $\sim n / m$.
- Consequence: Number of probes for search/insert is O(1) and proportional to $n / m$
- $m$ too large -> too many empty chains.
- $m$ too small -> chains too long.
- Typical choice: $m \sim 1 / 5 n$-> constant time per operation.

Resizing in a separate-chaining hash table

- Goal: Average length of chain $n / m=$ constant lookup.
- Double hash table size when $n / m \geq 8$.
- Halve hash table size when $n / m \leq 2$.
- Need to rehash all keys when resizing (hashCode value for key does not change, but hash value changes as it depends on table size). Look at example


## Parting thoughts about separate-chaining

- Deletion: Easy! Hash key, find its chain, search for a node that contains it and remove it.
- Ordered operations: not supported. Instead, look into (balanced) BSTs.
- Fastest and most widely used dictionary implementation for applications where key order is not important.

| implementation | worst-case cost <br> (after N inserts) |  |  | average case (after N random inserts) |  |  | ordered iteration? | key interface |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | search | insert | delete | search hit | insert | delete |  |  |
| sequential search (unordered list) | $N$ | N | N | N/2 | N | N/2 | no | equals() |
| binary search (ordered array) | $\lg N$ | N | N | $\lg N$ | N/2 | N/2 | yes | compareTo() |
| BST | $N$ | $N$ | N | $1.38 \lg \mathrm{~N}$ | $1.38 \lg \mathrm{~N}$ | ? | yes | compareTo() |
| red-black tree | $2 \lg N$ | $2 \lg N$ | $2 \lg N$ | $1.00 \lg N$ | $1.00 \lg \mathrm{~N}$ | $1.00 \lg \mathrm{~N}$ | yes | compareTo() |
| separate chaining | $\lg N^{*}$ | $\lg \mathrm{N}^{*}$ | $\lg N^{*}$ | 3-5 * | 3-5 * | 3-5 * | no | equals() <br> hashCode() |

## Lecture 26-27: Hash tables

- Hash functions
- Separate chaining

Open addressing

## Linear Probing

- Alternate collision resolution when table size > number of keys ( $m>n$ ).
- Maintain keys and values in two parallel arrays.
- When a new key collides, find next empty slot and put it there.
- If the array is full, the search would not terminate.



## Linear Probing

- Hash: Map key to integer $i$ between 0 and $m-1$.
- Insert: Put at index $i$ if free. If not, try $i+1, i+2$, etc.
- Search: Search table index $i$. If occupied but no match, try $i+1, i+2$, etc
- If you find a gap then you know that it does not exist.
- Table size $m$ must be greater than the number of key-value pairs $n$.


## (1) (1)

$\square$

$$
\text { displacement }=3
$$

### 3.4 Linear Probing Demo

Robert Sedgewick I Kevin Wayne

http://algs4.cs.princeton.edu

## Linear Probing Example



## Practice time

- Assume a dictionary implemented using hashing and linear probing for handling collisions.
- Let $m=7$ be the hash table size.
- For simplicity, we will assume that keys are integers, hash code is just the integer, and that the hash value for each key $k$ is calculated as $h(k)=k \% m$.
- Insert the key-value pairs (47, 0), $(3,1),(28,2),(14,3),(9,4)$, $(47,5)$ and show the resulting dictionary.


## Answer

| Key | Hash | Value |
| :---: | :---: | :---: |
| 47 | 5 | 0 |
| 3 | 3 | 1 |
| 28 | 0 | 2 |
| 14 | 0 | 3 |
| 9 | 2 | 4 |
| 47 | 5 | 5 |


| Keys | 28 | 14 | 9 | 3 | 47 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2 | 3 | 2 | 1 |  | 5 |  |

## Symbol table with linear probing implementation

```
public class LinearProbingHashST<Key, Value> {
    private int m = 32768; // hash table size
    private Value[] Vals = (Value[]) new Object[m]; // parallel arrays
    private Key[] Vals = (Key[]) new Object[m];
public Value get(Key key) {
    for (int i = hash(key); keys[i] != null; i = (i+1) % m) { // start at hash
            if (key.equals(keys[i])) return vals[i]; // increment by 1, wrap
    }
    return null;
}
public void put(Key key, Value val) {
    int i;
    for (int i = hash(key); keys[i] != null; i = (i+1) % m) { // start at hash
        if (key.equals(keys[i])){ // increment by 1, wrap
            break;
        }
    }
    keys[i] = key;
    vals[i] = val;
}
```


## Primary clustering

- Cluster: a contiguous block of keys.
- Observation: new keys likely to hash in middle of big clusters.
- What happens to time complexity for search and insert?



## Analysis of Linear Probing

- Proposition: Under uniform hashing assumption, the average number of probes in a linear-probing hash table of size $m$ that contains $n$ keys where $n=\alpha m$ is at most (alpha is the ratio of $n / m$ )
- $1 / 2\left(1+\frac{1}{1-a}\right)$ for search hits and
- $1 / 2\left(1+\frac{1}{(1-a)^{2}}\right)$ for search misses and insertions.
- [Knuth 1963], $\alpha<1$ what happens when alpha is $1 / 2$ ? Close to 1 say 0.9 ?
- Parameters:
- $m$ too large -> too many empty array entries.
- $m$ too small -> search time becomes too long.
- Typical choice for load factor: $\alpha=n / m \sim 1 / 2$-> constant time per operation.


## Resizing in a linear probing hash table

- Goal: Fullness of array (load factor) $n / m \leq 1 / 2$.
- Double hash table size when $n / m \geq 1 / 2$.
- Halve hash table size when $n / m \leq 1 / 8$.
- Need to rehash all keys when resizing (hash code does not change, but hash value changes as it depends on table size).
- Deletion not straightforward. Why?
- Find, remove, reinsert all subsequent key-value pairs in cluster

| implementation | worst-case cost (after N inserts) |  |  | average case <br> (after N random inserts) |  |  | ordered iteration? | key <br> interface |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | search | insert | delete | search hit | insert | delete |  |  |
| sequential search (unordered list) | N | N | N | N/2 | N | N/2 | no | equals() |
| binary search (ordered array) | $\lg N$ | N | $N$ | $\lg N$ | N/2 | N/2 | yes | compareTo() |
| BST | $N$ | $N$ | $N$ | $1.38 \lg N$ | $1.38 \lg N$ | ? | yes | compareTo() |
| red-black tree | $2 \lg N$ | $2 \lg N$ | $2 \lg N$ | $1.00 \lg \mathrm{~N}$ | $1.00 \lg \mathrm{~N}$ | $1.00 \lg \mathrm{~N}$ | yes | compareTo() |
| separate chaining | $\lg N^{*}$ | $\lg N^{*}$ | $\lg N^{*}$ | 3-5 * | 3-5 * | 3-5 * | no | $\begin{gathered} \text { equa1s() } \\ \text { hashCode() } \end{gathered}$ |
| linear probing | $\lg N^{*}$ | $\lg N^{*}$ | $\lg N^{*}$ | 3-5 * | 3-5 * | 3-5 * | no | $\begin{gathered} \text { equals() } \\ \text { hashCode() } \end{gathered}$ |

## Separate chaining.

- Easier to implement delete.
- Performance degrades gracefully.
- Clustering less sensitive to poorly-designed hash function.


## Linear probing.

- Less wasted space.
- Better cache performance.
- Liner probing - less wasted space if the hashing function is not very good
- Linear probing - better cache performance because of the use of an array instead of chasing pointers


## Quadratic Probing

- Another open addressing technique that aims to reduce primary clustering by taking the original hash index and adding successive values of an arbitrary quadratic polynomial until an open slot is found.
- Modify the probe sequence so that $h(k, i)=\left(h(k)+c_{1} i+c_{2} i^{2}\right) \% m, c_{2} \neq 0$, where
v $i$ is the $i$-th time we have had a collision for the given index.
- When $c_{2}=0$, then quadratic probing reduces to linear probing.


## Quadratic probing - Example

- $h(k)=k \% m$ and $h(k, i)=\left(h(k)+i^{2}\right) \% m$.
- Assume $m=13$, and key-value pairs to insert: $(17,0),(33,1)$, $(18,2),(20,3),(44,4),(11,5),(19,6),(7,7)$.

|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(17,0)$ |  |  |  |  | 17 |  |  |  |  |  |  |  |  |  |
| $(33,1)$ |  |  |  |  | 17 |  |  | 33 |  |  |  |  |  |  |
| $(18,2)$ |  |  |  |  | 17 | 18 |  | 33 |  |  |  |  |  |  |
| $(20,3)$ |  |  |  |  | 17 | 18 |  | 33 | 20 |  |  |  |  | Collision! |
| $(44,4)$ |  |  |  |  | 17 | 18 | 44 | 33 | 20 |  |  |  |  | Collision! |
| $(11,5)$ |  |  |  |  | 17 | 18 | 44 | 33 | 20 |  |  | 11 |  |  |
| $(19,6)$ |  |  |  |  | 17 | 18 | 44 | 33 | 20 |  | 19 | 11 |  | Collision! |
| $(7,7)$ |  |  |  | 7 | 17 | 18 | 44 | 33 | 20 |  | 19 | 11 |  | Collision |

## Summary for dictionary/symbol table operations

|  | Worst case |  |  | Average case |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Search | Insert | Delete | Search | Insert | Delete |
| BST | $n$ | $n$ | $n$ | $\log n$ | $\log n$ | $\log n$ |
| 2-3 search tree | $\log n$ |
| Separate <br> chaining | $n$ | $n$ | $n$ | 1 | 1 | 1 |
| Open <br> addressing | $n$ | $n$ | $n$ | 1 | 1 | 1 |

## Hash tables vs balanced search trees

- Hash tables:
- Simpler to code.
- No effective alternative of unordered keys.
- Faster for simple keys (a few arithmetic operations versus $\log n$ compares).
- Balanced search trees:
- Stronger performance guarantee.
- Support for ordered symbol table operations.
- Easier to implement compareTo() than hashCode().
- Java includes both:
- Balanced search trees: java.util.TreeMap, java.util.TreeSet.
, Hash tables: java.util.HashMap, java.util.IdentityHashMap.


## Lecture 26-27: Hash tables

- Hash functions
- Separate chaining
, Open addressing


## Readings:

- Textbook: Chapter 3.4 (Pages 458-477)
- Website:
- https://algs4.cs.princeton.edu/34hash/
- Visualization:
- https://visualgo.net/en/hashtable

Practice Problems:
( 3.4.1-3.4.13

## Intro to Undirected Graphs

- Undirected Graphs


## Graphs

- Graphs: mathematical abstractions that model a set of vertices connected pairwise by edges.
, Why study graphs?
- Thousands of practical applications.
- Hundreds of graph algorithms.
- Interesting and widely applicable abstraction.
- Core branch of computer science and discrete math.


## Example: (Fake) LA subway map

- Vertices: stations. Edges: route.

[^0]

## Example: Social networks

- Vertices: people. Edges: "friendships".

Source: Paul Butler


## facebook

## Example: Protein-protein networks

, Vertices: proteins.
t Edges: interactions.

- Source: Macmillan Magazines Ltd.



## Graph Applications

| Graph | Vertex | Edge |
| :---: | :---: | :---: |
| Communication | Telephone, computer | Cable |
| Circuit | Gate, register, processor | Wire |
| Financial | Stock | Transaction |
| Transportation | Intersection | Street |
| Game | Board | Legal move |
| Neural network | Neuron | Synapse |
| Molecule | Atom | Bond |
| Schedule | Job | Constraint |

## Graph Terminology



- Graph: set of vertices V connected pairwise by a set of edges E .
- E.g., $V=\{A, B, C, D\}, E=\{\{A, B\},\{A, C\},\{A, D\},\{B, D\}\}$.
- Path: sequence of vertices connected by edges, with no repeated edges.
- A simple path is a path with no repeated vertices.
- Cycle: Path with at least one edge whose first and last vertices are the same.
- A simple cycle is a cycle with no repeated vertices (other than the first and last).
- The length of a cycle or a path is its number of edges.


## Graph Terminology



- Self-loop: an edge that connects a vertex to itself.
- Two vertices are connected if there is a path between them.
- Two edges are parallel if they connect the same pair of vertices.
- When an edge connects two vertices, we say that the vertices are adjacent to one another and that the edge is incident on both vertices.
- The degree of a vertex is the number of edges incident on it.
- A subgraph of a graph is a subset of a graph's edges and their associated vertices.


## Graph Terminology



- A graph is connected if there is a path from every vertex to every other vertex.
- A graph that is not connected consists of a set of connected components, which are maximal connected subgraphs.
- An acyclic graph is a graph with no cycles.
- A tree is an acyclic connected graph.
- A forest is a disjoint set of trees.


## Graph Terminology



## Popular graph problems

Problem
Description
s-t path
Is there a path between $s$ and $t$ ?
Shortest s-t path What is the shortest path between $s$ and $t$ ?
Cycle Is there a cycle in the graph?
Euler cycle Is there a cycle that uses each edge exactly once?
Hamilton cycle
Is there a cycle that uses each vertex exactly once?
Connectivity
Is there a path between every pair of vertices?
Biconnectivity Is there an vertex whose removal disconnects the graph?

## Lecture 33: Intro to Undirected Graphs

- Undirected Graphs


## Readings:

, Textbook: Chapter 4.1 (Pages 515-521)

- Website:
- https://algs4.cs.princeton.edu/41graph/


## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components


## Graph representation

- Vertex representation: Here, integers between 0 and V-1.
- We will use a symbol table to map between names and integers.

| 0 | 5 |
| :--- | :--- |
| 4 | 3 |
| 0 | 1 |
| 9 | 12 |
| 6 | 4 |
| 5 | 4 |
| 0 | 2 |
| 11 | 12 |
| 9 | 10 |
| 0 | 6 |
| 7 | 8 |
| 9 | 11 |
| 5 | 3 |

## Basic Graph API

- public class Graph
- Graph (int V): create an empty graph with V vertices.
, void addEdge(int v, int w): add an edge v-w.
- Iterable<Integer> adj(int v): return vertices adjacent to v .
- int V(): number of vertices.
- int E() : number of edges.

Example of how to use the Graph API to process the graph

- public static int degree(Graph g, int v)\{ int count $=0$; for(int w : g.adj(v))
count++; return count;
\}


## Graph density

- In a simple graph (no parallel edges or loops), if $|V|=n$, then:
- minimum number of edges is 0 and
- maximum number of edges is $n(n-1) / 2$.
- Dense graph -> edges closer to maximum.
- Sparse graph -> edges closer to minimum.


## Graph representation: adjacency matrix

- Maintain a $|V|$-by- $|V|$ boolean array; for each edge $v$-w:
- $\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=$ true; (1).
- Good for dense graphs (edges close to $|V|^{2}$ ).
- Constant time for lookup of an edge.
- Constant time for adding an edge.
- $|V|$ time for iterating over vertices adjacent to $v$.
- Symmetric, therefore wastes space in undirected graphs ( $|V|^{2}$ ).

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{A}$ | 0 | 1 | 1 | 1 |
| $\mathbf{B}$ | 1 | 0 | 0 | 1 |
| $\mathbf{C}$ | 1 | 0 | 0 | 0 |
| $\mathbf{D}$ | 1 | 1 | 0 | 0 |



- Not widely used in practice.


## Graph representation: adjacency list

- Maintain vertex-indexed array of lists.



## Adjacency-list graph representation in Java

```
public class Graph {
    private final int V;
    private int E;
private Bag<Integer>[] adj;
//Initializes an empty graph with V vertices and 0 edges.
public Graph(int V) {
        this.V = V;
        this.E = 0;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++) {
        adj[v] = new Bag<Integer>();
        }
}
//Adds the undirected edge v-w to this graph. Parallel edges and self-loops allowed
public void addEdge(int v, int w) {
        E++;
        adj[v].add(w);
        adj[w].add(v);
}
//Returns the vertices adjacent to vertex v.
public Iterable<Integer> adj(int v) {
    return adj[v];
}
```

A bag is a collection where removing items is not supported-its purpose is to provide clients with the ability to collect items and then to iterate through the collected items

## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components

Mazes as graphs
( Vertex = intersection; edge = passage


## How to survive a maze: a lesson from a Greek myth

- Theseus escaped from the labyrinth after killing the Minotaur with the following strategy instructed by Ariadne:
- Unroll a ball of string behind you.
- Mark each newly discovered intersection.
- Retrace steps when no unmarked options.
- Also known as the Trémaux algorithm.



## Depth-first search

- Goal: Systematically traverse a graph.
- DFS (to visit a vertex v)
, Mark vertex v.
- Recursively visit all unmarked vertices W adjacent to V .
, Typical applications:
- Find all vertices connected to a given vertex.
- Find a path between two vertices.



### 4.1 Depth-First Search Demo

Robert Sedgewick I Kevin Wayne

http://algs4.cs.princeton.edu

## Depth-first search

- Goal: Find all vertices connected to $s$ (and a corresponding path).
- Idea: Mimic maze exploration.
- Algorithm:
- Use recursion (ball of string).
- Mark each visited vertex (and keep track of edge taken to visit it).
- Return (retrace steps) when no unvisited options.
- When started at vertex s, DFS marks all vertices connected to s (and no other).


## Depth-first search in Java

```
public class DepthFirstSearch {
    private boolean[] marked;
    private int[] edgeTo;
    public DepthFirstSearch(Graph G, int s) {
    marked = new boolean[G.V()];
    edgeTo = new int[G.V()];
    dfs(G, s);
}
// depth first search from v
private void dfs(Graph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v)) {
        if (!marked[w]) {
            edgeTo[w] = v;
            dfs(G, W);
        }
    }
}
```


## Depth-first search Analysis

- DFS marks all vertices connected to s in time proportional to $|V|+|E|$ in the worst case.
- Initializing arrays marked and edgeTo takes time proportional to $|V|$.
- Each adjacency-list entry is examined exactly once and there are $2 E$ such edges (two for each edge).
- Once we run DFS, we can check if vertex $v$ is connected to $S$ in constant time. We can also find the V-S path (if it exists) in time proportional to its length.


## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components


## Breadth-first search

- BFS (from source vertex s)
- Put s on a queue and mark it as visited.
- Repeat until the queue is empty:
- Dequeue vertex V .
. Enqueue each of V's unmarked neighbors and mark them.
- Basic idea: BFS traverses vertices in order of distance from s.


### 4.1 Breadth-First Search Demo

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

## Breadth-first search in Java

```
public class BreadthFirstPaths {
    private boolean[] marked; // marked[v] = is there an s-v path
    private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
    private int[] distTo; // distTo[v] = number of edges shortest s-v path
    public BreadthFirstPaths(Graph G, int s) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        bfs(G, s);
    }
    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        distTo[s] = 0;
        marked[s] = true;
        q.enqueue(s);
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
            if (!marked[w]) {
                edgeTo[w] = v
                distTo[w] = distTo[v] + 1;
                marked[w] = true;
                q.enqueue(w);
            }
            }
        }
    }
```


## Breadth-first search

- DFS: Put unvisited vertices on a stack.
- BFS: Put unvisited vertices on a queue.
- Shortest path problem: Find path from $s$ to $t$ that uses the fewest number of edges.
- E.g., calculate the fewest numbers of hops in a communication network.
- E.g., calculate the Kevin Bacon number or Erdös number.
- BFS computes shortest paths from $s$ to all vertices in a graph in time proportional to $|E|+|V|$
- The queue always consists of zero or more vertices of distance $k$ from $s$, followed by zero or more vertices of $\mathrm{k}+1$.


## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components


## Connectivity queries

- Goal: Preprocess graph to answer questions of the form "is v connected to $\mathrm{w}^{\prime \prime}$ in constant time.
- public class CC
- CC(Graph G): find connected components in G.
, boolean connected(int v, int w): are $v$ and $w$ connected?
b int count(): number of connected components.
, int id(int v): component identifier for vertex V .


## Connected components

- Goal: Partition vertices into connected components.
- Connected Components
- Initialize all vertices as unmarked.
* For each unmarked vertex, run DFS to identify all vertices discovered as part of the same component.


Robert Sedgewick | Kevin Wayne
http://algs4.cs.princeton.edu

### 4.1 Connected Components Demo

## Connected Components in Java

```
public class CC {
    private boolean[] marked; // marked[v] = has vertex v been marked?
    private int[] id;
    private int[] size; // size[id] = number of vertices in given component
    private int count; // number of connected components
    id[v] = id of connected component containing v
public CC(Graph G) {
    marked = new boolean[G.V()];
        id = new int[G.V()];
        size = new int[G.V()]
        for (int v = 0; v < G.V(); v++) {
        if (!marked[v]) {
            dfs(G, v);
            count++;
            }
        }
}
private void dfs(Graph G, int v) {
    marked[v] = true;
    id[v] = count;
    size[count]++
    for (int w : G.adj(v)) {
        if (!marked[w]) {
            dfs(G, W);
        }
    }
}
```


## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components


## Readings:

- Textbook: Chapter 4.1 (Pages 522-556)
, Website:
- https://algs4.cs.princeton.edu/41graph/


## Practice Problems:

( 4.1.1-4.1.6, 4.1.9, 4.1.11


[^0]:    - Source: LA Weekly

