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TODAY’S LECTURE IN A NUTSHELL

Lecture 19: Binary Search Trees

▸ Binary Search Trees


▸ 2-3 Search Trees
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Some slides adopted from Algorithms 4th Edition or COS226



BINARY SEARCH TREES

Definitions

▸ Binary Search Tree: A binary tree in symmetric order.


▸ Symmetric order: Each node has a key, and every node’s 
key is:


▸ Larger than all keys in its left subtree.


▸ Smaller than all keys in its right subtree.


▸
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BINARY SEARCH TREES

Search example
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BINARY SEARCH TREES

Insert example
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BINARY SEARCH TREES

Practice Time

▸ Add the key-value pairs (4,3) and (9,2) in the following 
BST:
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BINARY SEARCH TREES

Tree shape
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▸ The same set of keys can result to different BSTs based on 
their order of insertion.


▸ Number of compares for search/insert is equal to depth of 
node +1.



BINARY SEARCH TREES

BSTs mathematical analysis
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▸ If  distinct keys are inserted into a BST in random order, the 
expected number of compares of search/insert is .


▸ If  distinct keys are inserted into a BST in random order, the 
expected height of tree is  . [Reed, 2003].


▸ Worst case height is  but highly unlikely.


▸ Keys would have to come (reversely) sorted!


▸ All ordered operations in a dictionary implemented with a BST 
depend on the height of the BST.

n
O(log n)

n
O(log n)

n



BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf (case 0)
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▸ Simply delete node.


▸ Example: delete 52 locates a node which is a leaf and removes it.




BINARY SEARCH TREES

Hibbard deletion: Delete node with one child (case 1)
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▸ Delete node and replace it with its only child.


▸ Example: delete 70 locates a node which has one child and replaces it with the child.




BINARY SEARCH TREES

Hibbard deletion: Delete node with two children (case 2)
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▸ Delete node and replace it with successor (node with smallest of the larger keys). 


▸ Where is the smallest node of the right subtree?


▸ Left most node of right subtree


▸ Move successor’s child (if any) where successor was. Example: Delete 50

https://visualgo.net/en/bst

https://visualgo.net/en/bst


BINARY SEARCH TREES 13

   public void delete(Key key) {

       root = delete(root, key);
   }


    private Node delete(Node x, Key key) {

        if (x == null) return null;

        int cmp = key.compareTo(x.key);    // compare key to node
        if (cmp < 0)                       

            x.left  = delete(x.left,  key);  // Search for key
        else if (cmp > 0)  
            x.right = delete(x.right, key);
        else {                               // key found

            if (x.right == null)             // No right child

                return x.left;
            if (x.left  == null)             // No left child

                return x.right;
            Node t = x;                      // replace with successor
            x = min(t.right);                // find successor - min of x.right
            x.right = deleteMin(t.right);
            x.left = t.left;
        } 

        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }



BINARY SEARCH TREES

Practice Time

▸ Delete the node 21 following Hibbard’s deletion
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BINARY SEARCH TREES

Answer

▸ Delete the node 21 following Hibbard’s deletion
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BINARY SEARCH TREES

Hibbard’s deletion
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▸ Unsatisfactory solution. If we were to perform many insertions and deletions 
the BST ends up being not symmetric and skewed to the left.


▸ Extremely complicated analysis, but average cost of deletion ends up 
being . Let’s simplify things by saying it stays .


▸ No one has proven that alternating between the predecessor and 
successor will fix this.


▸ Hibbard devised the algorithm in 1962. Still no algorithm for efficient  
deletion in Binary Search Trees! Open problem.


▸ Overall, BSTs can have  worst-case for search, insert, and delete. We 
want to do better (see future lectures).

n O(log n)

O(n)



TODAY’S LECTURE IN A NUTSHELL

Lecture 19: Binary Search Trees

▸ Binary Search Trees
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapters 3.1 (Pages 362—386) and 3.2 (Pages 396–414)


▸ Website:


▸ https://algs4.cs.princeton.edu/31elementary/


▸ https://algs4.cs.princeton.edu/32bst/


▸ Visualization:


▸ https://visualgo.net/en/bst
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Practice Problems:

▸ 3.1.1-3.1.6, 3.2.1-3.2.13

https://algs4.cs.princeton.edu/31elementary/
https://algs4.cs.princeton.edu/32bst/
https://visualgo.net/en/bst


TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees


▸ Search


▸ Insertion


▸ Construction


▸ Performance
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Some slides adopted from Algorithms 4th Edition or COS246



2-3 SEARCH TREES

The story so far

▸ The symbol table/dictionary is a fundamental data type. 


▸ Naive implementations (arrays/linked lists sorted or 
unsorted) are way too slow.


▸ Binary search trees work well in the average case, but can 
grow too tall and imbalanced in the worst case.


▸ Question of the day: How to balance search trees?
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2-3 SEARCH TREES

Order of growth for symbol table operations
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Worst case Average case

Search Insert Delete Search Insert Delete

BST

Goal

n n n log n log n n

log n log n log nlog nlog nlog n



2-3 SEARCH TREES

2-3 tree
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▸ Definition: A 2-3 tree is either empty or a


▸ 2-node: one key (and associated value) and two links, a left to a 2-3 
search tree with smaller keys, and a right to a 2-3 search tree with larger 
keys (similarly to standard BSTs), or a


▸ 3-node: two keys (and associated values) and three links, a left to a 2-3 
search tree with smaller keys, a middle to a 2-3 search tree with keys 
between the node’s keys, and a right to a 2-3 search tree with larger keys.


▸ Symmetric order: In-order traversal yields keys in ascending order.


▸ Perfect balance: Every path from root to null link (empty tree) has the same 
length.



2-3 SEARCH TREES

Example of a 2-3 tree
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▸ 2-node, business as usual with BSTs.


▸ (e.g.,  EJ are smaller than M and R is larger than M).


▸ In 3-node, 


▸ left link points to 2-3 search tree with smaller keys than first key,


▸ (e.g., AC are smaller than E.)


▸ middle link points to 2-3 search tree with keys between first and 
second key,


▸ (e.g. H is between E and J.)


▸ right link points to 2-3 search tree with keys larger than second 
key.


▸ (e.g, L is larger than J).



TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees


▸ Search


▸ Insertion


▸ Construction


▸ Performance
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SEARCH

How to search for a key
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▸ Compare search key against (every) key in node.


▸ Find interval containing search key (left, potentially middle, or right).


▸ Follow associated link, recursively.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees


▸ Search


▸ Insertion


▸ Construction


▸ Performance
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INSERTION

How to insert into a 2-node
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▸ Add new key to 2-node to create a 3-node.
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INSERTION

How to insert into a tree consisting of a single 3-node
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▸ Add new key to 3-node to create a 
temporary 4-node.


▸ Move middle key in 4-node into 
parent.


▸ Split 4-node into two 2-nodes.


▸ Height went up by 1.



INSERTION

How to insert into a 3-node whose parent is a 2-node
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▸ Add new key to 3-node to create a 
temporary 4-node.


▸ Split 4-node into two 2-nodes and 
pass middle key to parent.


▸ Replace 2-node parent with 3-node.



INSERTION

How to insert into a 3-node whose parent is a 3-node
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▸ Add new key to 3-node to create a 
temporary 4-node.


▸ Split 4-node into two 2-nodes and 
pass middle key to parent creating a 
temporary 4-node.


▸ Split 4-node into two 2-nodes and 
pass middle key to parent.


▸ Repeat up the tree, as necessary.



INSERTION

Splitting the root
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▸ If end up with a temporary 4-node 
root, split into three 2-nodes.


▸ Increases height by 1 but perfect 
balance is preserved.
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TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees


▸ Search


▸ Insertion


▸ Construction


▸ Performance
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CONSTRUCTION

Practice Time
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▸ Draw the 2-3 tree that results when you insert the keys: 
E A S Y Q U T I O N in that order in an initially empty tree.



CONSTRUCTION

Answer

38

▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html


TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees


▸ Search


▸ Insertion


▸ Construction


▸ Performance
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PERFORMANCE

Height of 2-3 search trees
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▸ Worst case:  (all 2-nodes).


▸ Best case:  (all 3-nodes) 


▸ That means that storing a million nodes will lead to a tree with height between 
12 and 20, and storing a billion nodes to a tree with height between 18 and 
30 (not bad!).


▸  Search and insert are !


▸ But implementation is a pain and the overhead incurred could make the 
algorithms slower than standard BST search and insert. 


▸ We did provide insurance against a worst case but we would prefer the overhead 
cost for that insurance to be low. Stay tuned! We will see a much easier way.

log n

log3 n = 0.631 log n

O(log n)



PERFORMANCE

Summary for symbol table/dictionary operations
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Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search 
trees

n n n log n log n n

log n log n log nlog nlog nlog n



TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees


▸ Search


▸ Insertion


▸ Construction


▸ Performance
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 424-431)


▸ Website:


▸ https://algs4.cs.princeton.edu/33balanced/
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Practice Problems:

▸ 3.3.2-3.3.5

https://algs4.cs.princeton.edu/33balanced/

