CSO62
 DAIA STRUCTURES AND ADVANCED PROGRAMMING

19: Binary Search Trees, 2-3 Search Trees

Alexandra Papoutsaki shelherlhers

Tom Yeh he/him/his

Lecture 19: Binary Search Trees

- Binary Search Trees
- 2-3 Search Trees

Definitions

- Binary Search Tree: A binary tree in symmetric order.
- Symmetric order: Each node has a key, and every node's key is:
- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

Search example

Successful (left) and unsuccessful (right) search in a BST

Insert example

Insertion into a BST

Practice Time

- Add the key-value pairs $(4,3)$ and $(9,2)$ in the following BST:

3.2 Binary Search Tree Demo

Tree shape

- The same set of keys can result to different BSTs based on their order of insertion.
- Number of compares for search/insert is equal to depth of node +1.

BSTs mathematical analysis

- If n distinct keys are inserted into a BST in random order, the expected number of compares of search/insert is $O(\log n)$.
- If n distinct keys are inserted into a BST in random order, the expected height of tree is $O(\log n)$. [Reed, 2003].
- Worst case height is n but highly unlikely.
, Keys would have to come (reversely) sorted!
- All ordered operations in a dictionary implemented with a BST depend on the height of the BST.

Hibbard deletion: Delete node which is a leaf (case 0)

- Simply delete node.
- Example: delete 52 locates a node which is a leaf and removes it.

Hibbard deletion: Delete node with one child (case 1)

- Delete node and replace it with its only child.
- Example: delete 70 locates a node which has one child and replaces it with the child.

Hibbard deletion: Delete node with two children (case 2)

- Delete node and replace it with successor (node with smallest of the larger keys).
, Where is the smallest node of the right subtree?
- Left most node of right subtree
- Move successor's child (if any) where successor was. Example: Delete 50


```
public void delete(Key key) {
    root = delete(root, key);
}
private Node delete(Node x, Key key) {
    if (x == null) return null;
    int cmp = key.compareTo(x.key); // compare key to node
    if (cmp < 0)
        x.left = delete(x.left, key); // Search for key
    else if (cmp > 0)
            x.right = delete(x.right, key);
    else {
        if (x.right == null)
                return x.left;
            if (x.left == null) // No left child
                return x.right;
            Node t = x; // replace with successor
            x = min(t.right); // find successor - min of x.right
            x.right = deleteMin(t.right);
            x.left = t.left;
    }
    x.size = size(x.left) + size(x.right) + 1;
    return x;
}
```


Practice Time

- Delete the node 21 following Hibbard's deletion

Answer

- Delete the node 21 following Hibbard's deletion

Hibbard's deletion

- Unsatisfactory solution. If we were to perform many insertions and deletions the BST ends up being not symmetric and skewed to the left.
- Extremely complicated analysis, but average cost of deletion ends up being \sqrt{n}. Let's simplify things by saying it stays $O(\log n)$.
* No one has proven that alternating between the predecessor and successor will fix this.
- Hibbard devised the algorithm in 1962. Still no algorithm for efficient deletion in Binary Search Trees! Open problem.
- Overall, BSTs can have $O(n)$ worst-case for search, insert, and delete. We want to do better (see future lectures).

Lecture 19: Binary Search Trees

- Binary Search Trees

Readings:

- Textbook: Chapters 3.1 (Pages 362-386) and 3.2 (Pages 396-414)
- Website:
- https://algs4.cs.princeton.edu/31elementary/
- https://algs4.cs.princeton.edu/32bst/
- Visualization:
- https://visualgo.net/en/bst

Practice Problems:

(3.1.1-3.1.6, 3.2.1-3.2.13

Lecture 19: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

The story so far

- The symbol table/dictionary is a fundamental data type.
- Naive implementations (arrays/linked lists sorted or unsorted) are way too slow.
- Binary search trees work well in the average case, but can grow too tall and imbalanced in the worst case.
- Question of the day: How to balance search trees?

Order of growth for symbol table operations

	Worst case			Average case		
	Search	Insert	Delete	Search	Insert	Delete
BST	n	n	n	$\log n$	$\log n$	\sqrt{n}
Goal	$\log n$					

2-3 tree

Anatomy of a 2-3 search tree
(Definition: A 2-3 tree is either empty or a
, 2-node: one key (and associated value) and two links, a left to a 2-3 search tree with smaller keys, and a right to a 2-3 search tree with larger keys (similarly to standard BSTs), or a
, 3-node: two keys (and associated values) and three links, a left to a 2-3 search tree with smaller keys, a middle to a $2-3$ search tree with keys between the node's keys, and a right to a 2-3 search tree with larger keys.

- Symmetric order: In-order traversal yields keys in ascending order.
- Perfect balance: Every path from root to null link (empty tree) has the same length.

Example of a 2-3 tree

- 2-node, business as usual with BSTs.
- (e.g., EJ are smaller than M and R is larger than M).
- In 3-node,
- left link points to 2-3 search tree with smaller keys than first key,
- (e.g., AC are smaller than E.)
- middle link points to 2-3 search tree with keys between first and second key,
- (e.g. H is between E and J.)

Anatomy of a 2-3 search tree

- right link points to $2-3$ search tree with keys larger than second key.
- (e.g, L is larger than J).

Lecture 24: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

How to search for a key

- Compare search key against (every) key in node.
- Find interval containing search key (left, potentially middle, or right).
- Follow associated link, recursively.

unsuccessful search for B

3.3 2-3 Tree Demo

- search
- insertion

Algorithms

construction

Lecture 24: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

How to insert into a 2-node

- Add new key to 2-node to create a 3-node.

Insert into a 2-node

2-3 tree demo: insertion

Insert into a 2 -node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
insert K

How to insert into a tree consisting of a single 3 -node

- Add new key to 3-node to create a temporary 4-node.
- Move middle key in 4-node into inserting S parent.
- Split 4-node into two 2-nodes.
- Height went up by 1.

Insert into a single 3-node

How to insert into a 3 -node whose parent is a 2 -node

- Add new key to 3-node to create a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent.
- Replace 2-node parent with 3-node.
inserting Z

replace 2 -node

split 4-node into two 2-nodes
pass middle key to parent
Insert into a 3-node whose parent is a 2 -node

How to insert into a 3 -node whose parent is a 3 -node

- Add new key to 3-node to create a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent creating a temporary 4-node.
- Split 4-node into two 2-nodes and pass middle key to parent.
- Repeat up the tree, as necessary.

add middle key C to 3-node
to make temporary 4-node
pass middle key to parent
add middle key E to 2 -node

Splitting the root

- If end up with a temporary 4-node root, split into three 2-nodes.
- Increases height by 1 but perfect balance is preserved.
inserting D
search for D ends at this 3-node

add new key D to 3-node
to make temporary 4-node

add middle key C to 3-node to make temporary 4-node

split 4-node into two 2 -nodes pass middle key to parent
split 4-node into three 2-nodes increasing tree height by 1

Splitting the root

2-3 tree demo: insertion

Insert into a 2 -node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.
insert K

Lecture 24: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

2-3 tree demo: construction

insert R

Practice Time

- Draw the 2-3 tree that results when you insert the keys: EAS YOUTION in that order in an initially empty tree.

Answer

- EASYOUTION

Lecture 24: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

Height of 2-3 search trees

, Worst case: $\log n$ (all 2-nodes).
(Best case: $\log _{3} n=0.631 \log n$ (all 3-nodes)

- That means that storing a million nodes will lead to a tree with height between 12 and 20 , and storing a billion nodes to a tree with height between 18 and 30 (not bad!).
- Search and insert are $O(\log n)$!
- But implementation is a pain and the overhead incurred could make the algorithms slower than standard BST search and insert.
- We did provide insurance against a worst case but we would prefer the overhead cost for that insurance to be low. Stay tuned! We will see a much easier way.

Summary for symbol table/dictionary operations

	Worst case			Average case		
	Search	Insert	Delete	Search	Insert	Delete
BST	n	n	n	$\log n$	$\log n$	\sqrt{n}
2-3 search trees	$\log n$					

Lecture 24: 2-3 Search Trees

- 2-3 Search Trees
- Search
- Insertion
- Construction
- Performance

Readings:

- Textbook: Chapter 3.3 (Pages 424-431)
- Website:
- https://algs4.cs.princeton.edu/33balanced/

Practice Problems:

- 3.3.2-3.3.5

