
CS062

DATA STRUCTURES AND ADVANCED PROGRAMMING

19: Binary Search Trees, 2-3 Search Trees

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki 
she/her/hers

Tom Yeh 
he/him/his

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: Binary Search Trees

▸ Binary Search Trees

▸ 2-3 Search Trees

2

Some slides adopted from Algorithms 4th Edition or COS226

BINARY SEARCH TREES

Definitions

▸ Binary Search Tree: A binary tree in symmetric order.

▸ Symmetric order: Each node has a key, and every node’s
key is:

▸ Larger than all keys in its left subtree.

▸ Smaller than all keys in its right subtree.

▸

3

BINARY SEARCH TREES

Search example

4

BINARY SEARCH TREES

Insert example

5

BINARY SEARCH TREES

Practice Time

▸ Add the key-value pairs (4,3) and (9,2) in the following
BST:

6

7

BINARY SEARCH TREES

Tree shape

8

▸ The same set of keys can result to different BSTs based on
their order of insertion.

▸ Number of compares for search/insert is equal to depth of
node +1.

BINARY SEARCH TREES

BSTs mathematical analysis

9

▸ If distinct keys are inserted into a BST in random order, the
expected number of compares of search/insert is .

▸ If distinct keys are inserted into a BST in random order, the
expected height of tree is . [Reed, 2003].

▸ Worst case height is but highly unlikely.

▸ Keys would have to come (reversely) sorted!

▸ All ordered operations in a dictionary implemented with a BST
depend on the height of the BST.

n
O(log n)

n
O(log n)

n

BINARY SEARCH TREES

Hibbard deletion: Delete node which is a leaf (case 0)

10

▸ Simply delete node.

▸ Example: delete 52 locates a node which is a leaf and removes it.

BINARY SEARCH TREES

Hibbard deletion: Delete node with one child (case 1)

11

▸ Delete node and replace it with its only child.

▸ Example: delete 70 locates a node which has one child and replaces it with the child.

BINARY SEARCH TREES

Hibbard deletion: Delete node with two children (case 2)

12

▸ Delete node and replace it with successor (node with smallest of the larger keys).

▸ Where is the smallest node of the right subtree?

▸ Left most node of right subtree

▸ Move successor’s child (if any) where successor was. Example: Delete 50

https://visualgo.net/en/bst

https://visualgo.net/en/bst

BINARY SEARCH TREES 13

 public void delete(Key key) {

 root = delete(root, key);
 }

 private Node delete(Node x, Key key) {

 if (x == null) return null;

 int cmp = key.compareTo(x.key); // compare key to node
 if (cmp < 0)

 x.left = delete(x.left, key); // Search for key
 else if (cmp > 0)  
 x.right = delete(x.right, key);
 else { // key found

 if (x.right == null) // No right child

 return x.left;
 if (x.left == null) // No left child

 return x.right;
 Node t = x; // replace with successor
 x = min(t.right); // find successor - min of x.right
 x.right = deleteMin(t.right);
 x.left = t.left;
 }

 x.size = size(x.left) + size(x.right) + 1;
 return x;
 }

BINARY SEARCH TREES

Practice Time

▸ Delete the node 21 following Hibbard’s deletion

14

BINARY SEARCH TREES

Answer

▸ Delete the node 21 following Hibbard’s deletion

15

BINARY SEARCH TREES

Hibbard’s deletion

16

▸ Unsatisfactory solution. If we were to perform many insertions and deletions
the BST ends up being not symmetric and skewed to the left.

▸ Extremely complicated analysis, but average cost of deletion ends up
being . Let’s simplify things by saying it stays .

▸ No one has proven that alternating between the predecessor and
successor will fix this.

▸ Hibbard devised the algorithm in 1962. Still no algorithm for efficient
deletion in Binary Search Trees! Open problem.

▸ Overall, BSTs can have worst-case for search, insert, and delete. We
want to do better (see future lectures).

n O(log n)

O(n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: Binary Search Trees

▸ Binary Search Trees

17

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapters 3.1 (Pages 362—386) and 3.2 (Pages 396–414)

▸ Website:

▸ https://algs4.cs.princeton.edu/31elementary/

▸ https://algs4.cs.princeton.edu/32bst/

▸ Visualization:

▸ https://visualgo.net/en/bst

18

Practice Problems:

▸ 3.1.1-3.1.6, 3.2.1-3.2.13

https://algs4.cs.princeton.edu/31elementary/
https://algs4.cs.princeton.edu/32bst/
https://visualgo.net/en/bst

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

19

Some slides adopted from Algorithms 4th Edition or COS246

2-3 SEARCH TREES

The story so far

▸ The symbol table/dictionary is a fundamental data type.

▸ Naive implementations (arrays/linked lists sorted or
unsorted) are way too slow.

▸ Binary search trees work well in the average case, but can
grow too tall and imbalanced in the worst case.

▸ Question of the day: How to balance search trees?

20

2-3 SEARCH TREES

Order of growth for symbol table operations

21

Worst case Average case

Search Insert Delete Search Insert Delete

BST

Goal

n n n log n log n n

log n log n log nlog nlog nlog n

2-3 SEARCH TREES

2-3 tree

22

▸ Definition: A 2-3 tree is either empty or a

▸ 2-node: one key (and associated value) and two links, a left to a 2-3
search tree with smaller keys, and a right to a 2-3 search tree with larger
keys (similarly to standard BSTs), or a

▸ 3-node: two keys (and associated values) and three links, a left to a 2-3
search tree with smaller keys, a middle to a 2-3 search tree with keys
between the node’s keys, and a right to a 2-3 search tree with larger keys.

▸ Symmetric order: In-order traversal yields keys in ascending order.

▸ Perfect balance: Every path from root to null link (empty tree) has the same
length.

2-3 SEARCH TREES

Example of a 2-3 tree

23

▸ 2-node, business as usual with BSTs.

▸ (e.g., EJ are smaller than M and R is larger than M).

▸ In 3-node,

▸ left link points to 2-3 search tree with smaller keys than first key,

▸ (e.g., AC are smaller than E.)

▸ middle link points to 2-3 search tree with keys between first and
second key,

▸ (e.g. H is between E and J.)

▸ right link points to 2-3 search tree with keys larger than second
key.

▸ (e.g, L is larger than J).

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

24

SEARCH

How to search for a key

25

▸ Compare search key against (every) key in node.

▸ Find interval containing search key (left, potentially middle, or right).

▸ Follow associated link, recursively.

26

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

27

INSERTION

How to insert into a 2-node

28

▸ Add new key to 2-node to create a 3-node.

29

INSERTION

How to insert into a tree consisting of a single 3-node

30

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Move middle key in 4-node into
parent.

▸ Split 4-node into two 2-nodes.

▸ Height went up by 1.

INSERTION

How to insert into a 3-node whose parent is a 2-node

31

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Replace 2-node parent with 3-node.

INSERTION

How to insert into a 3-node whose parent is a 3-node

32

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent creating a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Repeat up the tree, as necessary.

INSERTION

Splitting the root

33

▸ If end up with a temporary 4-node
root, split into three 2-nodes.

▸ Increases height by 1 but perfect
balance is preserved.

34

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

35

36

CONSTRUCTION

Practice Time

37

▸ Draw the 2-3 tree that results when you insert the keys: 
E A S Y Q U T I O N in that order in an initially empty tree.

CONSTRUCTION

Answer

38

▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

39

PERFORMANCE

Height of 2-3 search trees

40

▸ Worst case: (all 2-nodes).

▸ Best case: (all 3-nodes)

▸ That means that storing a million nodes will lead to a tree with height between
12 and 20, and storing a billion nodes to a tree with height between 18 and
30 (not bad!).

▸ Search and insert are !

▸ But implementation is a pain and the overhead incurred could make the
algorithms slower than standard BST search and insert.

▸ We did provide insurance against a worst case but we would prefer the overhead
cost for that insurance to be low. Stay tuned! We will see a much easier way.

log n

log3 n = 0.631 log n

O(log n)

PERFORMANCE

Summary for symbol table/dictionary operations

41

Worst case Average case

Search Insert Delete Search Insert Delete

BST

2-3 search
trees

n n n log n log n n

log n log n log nlog nlog nlog n

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

42

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 424-431)

▸ Website:

▸ https://algs4.cs.princeton.edu/33balanced/

43

Practice Problems:

▸ 3.3.2-3.3.5

https://algs4.cs.princeton.edu/33balanced/

