£35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

17: Heaps, Priority Queue, Heap Sort

Tom Yeh
he/him/his

\ Alexandra Papoutsak
@ ' shelher/hers

2

BINARY TREE RECAP

Recap

» Binary Tree

» Tree Traversal: pre-order, in-order, post-order, and level
order:

TREE TRAVERSALS 3

Answer

» In-order:9,5,1,7,2,12,8,4, 3,11

» Post-order:9,1,2,12,7,5,3,11,4, 8

» Level-order:8,5,4,9,7,11,1,12, 3, 2

TODAY'S LECTURE IN A NUTSHELL

Lecture 17: Heaps, Priority Queues and Heapsort

» Binary Heaps
» Priority Queue

» Heapsort

BINARY HEAP 5

Heap-ordered binary trees
» A binary tree is heap-ordered if the key in each node is larger than
or equal to the keys in that node’s two children (if any).

» Equivalently, the key in each node of a heap-ordered binary tree is
smaller than or equal to the key in that node’s parent (if any).

» No assumption of which child is smaller.

» Moving up from any node, we get a non-decreasing sequence of
keys.

» Moving down from any node we get a non-increasing sequence of
keys.

BINARY HEAP
Heap-ordered binary trees

» The largest key in a heap-ordered binary tree is found at

the root! :

BINARY HEAP

Binary heap representation

» We could use a linked representation but we would need

three links for every node (one for parent, one for left
subtree, one for right subtree).

» If we use complete binary trees, we can use an array
instead.

» Compact arrays vs explicit links means memory savings
and faster execution!

BINARY HEAP
Binary heaps
» Binary heap: the array representation of a complete heap-

ordered binary tree.

» ltems are stored in an array such that each key is
guaranteed to be larger (or equal to) than the keys at
two other specific positions (children).

» Max-heap but there are min-heaps, too.

BINARY HEAP

Array representation of heaps

4

4

Nothing is placed at index 0.
Root is placed atindex 1.

Rest of nodes are placed
in level order.

No unnecessary indices and no
wasted space because it's
complete.

What's the relationship between
node index and 2 children?

(-

.i
ali]

Heap representations

BINARY HEAP

Reuniting immediate family members.

» For every node at index k, its parent is at index |k/2].

» Its two children are atindices 2k and 2k + 1.

» We can travel up and down the heap by using this simple
arithmetic on array indices.

» Accesses using indices are much faster than using
pointers/references

10

BINARY HEAP - ADD AND REMOVE ELEMENTS? 11
Swim/promote/percolate up/bottom up reheapity

» Scenario: a key becomes larger than its parent therefore it
violates the heap-ordered property.

» To eliminate the violation:
» Exchange key in child with key in parent.

» Repeat until heap order restored. /\ J&

BINARY HEAP 12

Swim/promote/percolate up

private void swim(int k) {
while (k > 1 && less(k/2, k)) {
exch(k, k/2);

k = k/2;

~ violates heap order
(larger key than parent)

BINARY HEAP 13
Binary heap: insertion

» Insert: Add node at end in bottom
level, then swim it up.

» Cost: At mostlogn + 1 compares.

public void 1insert(Key x) {

pal++n] = Xx;
swim(n);

BINARY HEAP
Practice Time

» Insert 47 in this binary heap.

14

BINARY HEAP

Answer

15

BINARY HEAP 16

Sink/demote/top down heapify

» Scenario: a key becomes smaller than one (or both) of its
children’s keys.

» To eliminate the violation:
» Exchange key in parent with key in larger child.

» Repeat until heap order is restored.

BINARY HEAP

17

Sink/demote/top down heapify

private void sink(int k) {
while (2*k <= n) {

int j = 2*k;

1f (J < n & less(3, J+1))
J++;

1f (Mless(k, 7))
break;

exch(k, 7J);

k =733

viclates heap order
(ler t} id)
‘smallert a(’h a chle

BINARY HEAP
Practice Time

» Sink 7 to its appropriate place in this binary heap.
3D
@
@) <E ‘@

£
©

18

BINARY HEAP 19

Answer

’ 3 > 2 o
S o

BINARY HEAP

Binary heap: return (and delete) the maximum

» Delete max: Exchange root with node at end. Return it and delete
it. Sink the new root down.

» Cost: At most 2 1ogn compares.

public Key delMax() {
Key max = pq[l];
exch(l, n--);
sink(1l);
pg[n+1l] = null;
return max;

20

BINARY HEAP

21

Binary heap: delete and return maximum

remove the maximum
- key to remove

CRONGRO P
(e,
:
OSERCENORO

O O @ 1"

BINARY HEAP

Practice Time

» Delete max (and return it!)

22

BINARY HEAP

Answer

A@J
@ OF D e

23

BINARY HEAP

Things to remember about runtime complexity of heaps

» Insertion is O(log n).
» Delete max is O(logn).

» Space efficiency is O(n).

24

A l g Orl thm S ROBERT SEDGEWICK | KEVIN WAYNE

2.4 BINARY HEAP DEMO

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu

TODAY'S LECTURE IN A NUTSHELL

26

Lecture 17: Heaps, Priority Queues and Heapsort

» Binary Heaps
» Priority Queue

» Heapsort

PRIORITY QUEUE

Priority Queue ADT

» Two operations:

» Delete (return) the maximum

» Insert

» Applications: load balancing and interruption handling in OS, Huffman codes for
compression, A* search for Al, Dijkstra’s and Prim's algorithm for graph search, etc.

» How can we implement a priority queue efficiently?

» Unordered array
» Ordered array

» Binary Heap

PRIORITY QUEUE IMPLEMENTATION

Option 1: Unordered array

» The lazy approach where we defer doing work (deleting
the maximum) until necessary.

» Insertis O(1) (will be implemented as push in stacks).

» Delete maximum is O(n) (have to traverse the entire array
to find the maximum element).

28

PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public UnorderedArrayMaxPQ(int capacity) {

pg = (Key[]) new Comparable[capacity];

n = 0;
by

public boolean isEmpty() { return n == 0;
public int size() { return n; }
public void insert(Key x) { pgln++] = x; }

public Key delMax() {
int max = 0;
for (int 1 =1; 1 < n; 1++)
1f (less(max, 1)) max = 1;
exch(max, n-1);

return pqg[--n];

}

private boolean less(int 1, int j) {
return pq[i].compareTo(pql[j]) < 0;

}

private void exch(int 1, int j) {
Key swap = pq[il];
pali] = pql]];
palj] = swap;

PRIORITY QUEUE

Practice Time

0 £ X 3 4 56 F 8 9

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
unordered array (lazy approach):

1.

o~ Ol

AW N

Insert P
Insert Q

Insert E

. Delete max

. Insert X

Insert A

/. Insert M

8. Delete max

Q. Insert P
10. Insert L
11. Insert E

12. Delete max

30

PRIORITY QUEUE

Answer

p

0 L R 3 4 s 6 S
PlQ

0 4L X 3 4 S 6 S 9
PIQ|E

0 L X 3 4 56 S 9
P|E|IBL

0 4L X 3 4 56 S 9
PLE X

0 L X 3 4 56 g 9
PLE XA

0 41 X 3 4 56 S 9
PLEDA A M

0 4L R 3 4 56 g 9
PlEWMIAIX

0O 4L X 3 4 5 6 S 9
PLEMALP

0 4L X 3 4 56 S 9
PlEUMIAIYIL

0 4L X 3 4 56 S 9
PlEMAIPILE

0O 4 R 3 4 5 6 S 9
ElEWMIAIPIL

0 L X 3 4 56 S 9

(mserdt |2

imsert &

insert £

delete -max -6
imser+ 9(

imser+ A

imser+ M

delete-mosx X<
P

inser+

insert |

—

imsert &
delete-max—=P

31

PRIORITY QUEUE 32

Option 2: Ordered array

» The eager approach where we do the work (keeping the
list sorted) up front to make later operations efficient.

» Insertis O(n) (we have to find the index to insert and shift
elements to perform insertion).

» Delete maximum is O(1) (just take the last element which
will the maximum).

PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public OrderedArrayMaxPQ(int capacity) {

pq = (Key[]) (new Comparable[capacity]);

n = 0;

public boolean isEmpty() { return n == 0; }
public int size() { return n; }
public Key delMax() { return pq[--n]; }

public void insert(Key key) {
int 1 = n-1;
while (1 >= 0 && less(key, pq[i])) {

pq[i+1] = pql[il; // Empty element is at index 1
1--;
ks
pali+l] = key; // I+l to get to the empty element
N++;

}

private boolean less(Key v, Key w) {
return v.compareTo(w) < 0;

}

33

PRIORITY QUEUE

Practice Time

0 £ X 3 4 56 F 8 9

» Given an empty array of capacity 10, perform the
following operations in a priority queue based on an
ordered array (eager approach):

1.

o~ Ol

AW N

Insert P
Insert Q

Insert E

. Delete max

. Insert X

Insert A

/. Insert M

8. Delete max

Q. Insert P
10. Insert L
11. Insert E

12. Delete max

34

PRIORITY QUEUE p imsert P
0 L &3 4 s6 F 8 1
Pl@Q (msert &)
Answer 0 L 234 56 F 89
EIP|E insert &
0 £ X3 4 56 F 89
A delete -max - Q.
0 L R 3 4 s6 F 8 9
e|P X Lﬂser%x
0 41 X 3 4 s6 F 8 9
AlEIP| X LmseV%A
0 4L X3 4 56 F 89
ALEIM|PIX LMSGV%M
0O 4L X3 4 56 F 89
AlEM|P . Ol/ééfff—map(,ax
0 4 X 3 4 56 + 8 9
AlEWMIP P insert P
0 41 X3 4 56 F 89
AlEILH PP insert |
0 4L X3 4 56 F 89
AlETEILIM]PIP insert €
0 4 X3 4 56 F 89
AEIEILIMIP delete-max-—>P
0 L R 3 4 56 F 89

PRIORITY QUEUE
Option 3: Binary heap

» Will allow us to both insert and delete max in O(log n)
running time.

» There is no way to implement a priority queue in such a

way that insert and delete max can be achieved in O(1)
running time.

» Priority queues are synonyms to binary heaps.

36

PRIORITY QUEUE

Practice Time

» Given an empty binary heap that represents a priority
queue, perform the following operations:

1. Insert P /. Insert M
2. Insert Q 8. Delete max
3. InsertE 9. Insert P
4. Delete max 10. Insert L
5. Insert X 11. Insert E

Insert A 12. Delete max

.

PRIORITY QUEUE

38

Answer

insert P @

insert Q
P
insert E @/@
©
remove max (Q)
E]

insert X

insert A E) 0

(X
insert M % P

remove max (X)) g \

K

insertr L 0

insert E O (W

TODAY'S LECTURE IN A NUTSHELL

39

Lecture 22: Priority Queues and Heapsort

» Priority Queue

» Heapsort

HEAPSORT 40

Basic plan for heap sort

» Use a priority queue to develop a sorting method that
works in two steps:

» 1) Heap construction: build a binary heap with all n keys
that need to be sorted.

» 2) Sortdown: repeatedly remove and return the maximum
key.

HEAPSORT

O(n) Heap construction

» Ignore all leaves (indices n/2+1,...,n).

» for(int k = n/2; k >= 1; k--)
sink(a, k, n);

41

» Key insight: After sink(a,k,n) completes, the subtree rooted at k

is a heap.

heap construction

starting point (arbitrary order)

sink(5, 11)

S

sink(4, 11)
@
@ ®
sink(3, 11)

sink(2, 11)

(T)

e) (P (L)
™ © © ©

sink(1l, 11)

result (heap-ordered;

HEAPSORT

Practice Time

» Run the first step of heapsort, heap construction, on the
array [2,9,7,6,5,8].

42

HEAPSORT

Answer: Heap construction

@ e
‘& o 4@5 @@5

starh Nt
N L =n/2=6/2=3

(orbi m‘fj '”) / g
/ simk (3,6

¢ i
2 @\ @\
A ?é ®
‘© OB 1@ 5@‘@
=, L
sink(Q‘é> Sﬂdi 6)
msut%[mf@f‘&@f@>

43

HEAPSORT

Sortdown

» Remove the maximum, one at a time, but leave in array
instead of nulling out.

» while(n>1){
exch(Ca, 1, n--);
sink(a, 1, n);

¥

» Key insight: After each iteration the array consists of a

heap-ordered subarray followed by a sub-array in final
order.

44

HEAPSORT

Sortdown

» while(n>1)1{
exch(Ca, 1, n--);
sink(a, 1, n);

3

sortdown

exch(l, 6) (M)
sink(1, 5)
o ®
@/ e 0

exch(l, 5)
Sink(l. 4)@/%)
[S)

dw @&

exch(l, 11)
sink(1, 10)

@ E) (E) X
h(1l, 10) h(l, 4)
esxicnl-c(l. 9) 9 ‘syi(gk(l. 3) e
R) (A) E)

©® ® 1

exch(l, 9) GD exch(1l, 3) (:>

sink(1, 8) sink(1, 2)
(E) @/ £

hn(l, 8 h(l, 2
exchil 9 () exehil, 3 ®
(0] E) E
(M) L €& W

R

exch(l, 7) 1
s)i(nk(l. 6) 0 A _
(M) ‘E ‘E
() L P ‘L M o]

SR QS lOT llx

result (sorted)

45

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

sink 1

HEAPSORT

Practice Time

» Given the heap you constructed before, run the second

step of heapsort, sortdown, to sort the array
[2,9,7,6,5,8].

47

HEAPSORT

Answer: Sortdown

48

i !
2 /‘> 2 /“@
/? A /@g
\S[mmofj/&{o/ Sé\ifth(ii§é>)

B o
@5@“@9@5 6

4
@g ¢ L, 5 q 3 8 9

SM[&? - excle (4 4) excl({3)
MELST Sink (1 5y sink(4,2)
i‘ &
L
=] 6 9 Zg 36
& 9
47' 58 67

Wiy
gfx (1 1%) result-(sorted)

HEAPSORT

Heapsort analysis

» Heap construction makes O(n) exchanges and O(n) compares.
» Sortdown and therefore the entire heap sort O(nlog n) exchanges and compares.
» In-place sorting algorithm with O(n log n) worst-case!
» Remember:
» mergesort: not in place, requires linear extra space.
» quicksort: quadratic time in worst case.
» Heapsort is optimal both for time and space in terms of Big-O, but:
» Inner loop longer than quick sort.
» Poor use of cache. Why?

» Not stable.

49

HEAPSORT 50

Sorting: Everything you need to remember about it!

Which Sort In Stable Best Average Worst Remarks
place
Selection X 0(;12) O(nz) 0(712) N exchanges
Insertion X X O(n) 0(712) O(nz) Use for small arrays

or partially ordered

Guaranteed
performance; stable

Merge X Omlogn)|Omnlogn) | O(nlogn)

: n log N probabilistic
Quick X O(nlogn)|O(nlogn) O(n*) guarantee; fastest!

Guaranteed

Heap X O(nlogn) O(nlogn) | O(mlogn) |performance; in place

TODAY'S LECTURE IN A NUTSHELL

51

Lecture 22: Priority Queues and Heapsort

» Priority Queue

» Heapsort

ASSIGNED READINGS AND PRACTICE PROBLEMS

52

Readings:

» Textbook:
» Chapter 2.4 (Pages 308-327), 2.5 (336-344)

» Website:

» Priority Queues: https://algs4.cs.princeton.edu/24pqg/

» Visualization:

» Create (nlogn) and heapsort: https://visualgo.net/en/heap

Practice Problems:

» 2.4.1-2.4.11. Also try some creative problems.

https://algs4.cs.princeton.edu/24pq/
https://visualgo.net/en/heap

ASSIGNED READINGS AND PRACTICE PROBLEMS

53

Readings:

» Textbook:
» Chapter 2.4 (Pages 308-327)

» Website:

» Priority Queues: https://algs4.cs.princeton.edu/24pqg/

» Visualization:

» Insert and ExtractMax: https://visualgo.net/en/heap

Practice Problems:

» Practice with traversals of trees and insertions and deletions in binary heaps

https://algs4.cs.princeton.edu/24pq/
https://visualgo.net/en/heap

