CS062 DATA STRUCTURES AND ADVANCED PROGRAMMING

17: Heaps, Priority Queue, Heap Sort

Alexandra Papoutsaki she/her/hers

Tom Yeh he/him/his

Recap

- Binary Tree
- Tree Traversal: pre-order, in-order, post-order, and level order:

Answer

- Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3
- In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11
- Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8
- Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2

Lecture 17: Heaps, Priority Queues and Heapsort

- Binary Heaps
- Priority Queue
- Heapsort

Heap-ordered binary trees

- A binary tree is heap-ordered if the key in each node is larger than or equal to the keys in that node's two children (if any).
- Equivalently, the key in each node of a heap-ordered binary tree is smaller than or equal to the key in that node's parent (if any).
- No assumption of which child is smaller.
- Moving up from any node, we get a non-decreasing sequence of keys.
- Moving down from any node we get a non-increasing sequence of keys.

Heap-ordered binary trees

The largest key in a heap-ordered binary tree is found at the root!

Binary heap representation

- We could use a linked representation but we would need three links for every node (one for parent, one for left subtree, one for right subtree).
- If we use complete binary trees, we can use an array instead.
 - Compact arrays vs explicit links means memory savings and faster execution!

Binary heaps

- Binary heap: the array representation of a complete heapordered binary tree.
 - Items are stored in an array such that each key is guaranteed to be larger (or equal to) than the keys at two other specific positions (children).
- Max-heap but there are min-heaps, too.

Array representation of heaps

- Nothing is placed at index 0.
- Root is placed at index 1.
- Rest of nodes are placed in level order.
- No unnecessary indices and no wasted space because it's complete.
- What's the relationship between node index and 2 children?

Reuniting immediate family members.

- For every node at index k, its parent is at index $\lfloor k/2 \rfloor$.
- Its two children are at indices 2k and 2k + 1.
- We can travel up and down the heap by using this simple arithmetic on array indices.
- Accesses using indices are much faster than using pointers/references

Swim/promote/percolate up/bottom up reheapify

- Scenario: a key becomes larger than its parent therefore it violates the heap-ordered property.
- To eliminate the violation:
 - Exchange key in child with key in parent.
 - Repeat until heap order restored.

Swim/promote/percolate up

```
private void swim(int k) {
   while (k > 1 \&\& less(k/2, k)) {
       exch(k, k/2);
                                                               R
       k = k/2;
   }
                                      G
}
                                                               violates heap order
                                                     G
                                               Η
                                   Е
                                                             (larger key thân parent)
                                                  Ρ
```

Binary heap: insertion

- Insert: Add node at end in bottom level, then swim it up.
- Cost: At most $\log n + 1$ compares.

```
public void insert(Key x) {
    pq[++n] = x;
    swim(n);
}
```


Practice Time

Insert 47 in this binary heap.

Answer

Sink/demote/top down heapify

- Scenario: a key becomes smaller than one (or both) of its children's keys.
- To eliminate the violation:
 - > Exchange key in parent with key in **larger** child.
 - Repeat until heap order is restored.

Sink/demote/top down heapify

Practice Time

Sink 7 to its appropriate place in this binary heap.

Answer

}

Binary heap: return (and delete) the maximum

- Delete max: Exchange root with node at end. Return it and delete it. Sink the new root down.
- ▶ Cost: At most 2 log *n* compares.

```
public Key delMax() {
   Key max = pq[1];
   exch(1, n--);
   sink(1);
   pq[n+1] = null;
   return max;
```

Binary heap: delete and return maximum

Practice Time

Delete max (and return it!)

Answer

Things to remember about runtime complexity of heaps

- Insertion is $O(\log n)$.
- Delete max is $O(\log n)$.
- Space efficiency is O(n).

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

2.4 BINARY HEAP DEMO

*

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Lecture 17: Heaps, Priority Queues and Heapsort

- Binary Heaps
- Priority Queue
- Heapsort

Priority Queue ADT

- Two operations:
 - Delete (return) the maximum
 - Insert

- Applications: load balancing and interruption handling in OS, Huffman codes for compression, A* search for AI, Dijkstra's and Prim's algorithm for graph search, etc.
- How can we implement a priority queue efficiently?
 - Unordered array
 - Ordered array
 - Binary Heap

Option 1: Unordered array

- The lazy approach where we defer doing work (deleting the maximum) until necessary.
- Insert is O(1) (will be implemented as push in stacks).
- Delete maximum is O(n) (have to traverse the entire array to find the maximum element).

}

```
public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
                     // elements
   private Key[] pa;
   private int n; // number of elements
   // set initial size of heap to hold size elements
   public UnorderedArrayMaxPQ(int capacity) {
       pq = (Key[]) new Comparable[capacity];
       n = 0;
    }
   public boolean isEmpty() { return n == 0; }
   public int size() { return n; }
   public void insert(Key x) { pq[n++] = x; }
   public Key delMax() {
       int max = 0;
       for (int i = 1; i < n; i++)</pre>
           if (less(max, i)) max = i;
       exch(max, n-1);
       return pq[--n];
    }
   private boolean less(int i, int j) {
       return pq[i].compareTo(pq[j]) < 0;</pre>
    }
   private void exch(int i, int j) {
       Key swap = pq[i];
       pq[i] = pq[j];
       pq[j] = swap;
    }
```

Practice Time

- Given an empty array of capacity 10, perform the following operations in a priority queue based on an unordered array (lazy approach):
- 1. Insert P 7. Insert M
- 2. Insert Q 8. Delete max
- 3. Insert E 9. Insert P
- 4. Delete max 10. Insert L
- 5. Insert X
- 6. Insert A

 \bigcirc

- 11. Insert E
- 12. Delete max

123456789

Option 2: Ordered array

- The eager approach where we do the work (keeping the list sorted) up front to make later operations efficient.
- Insert is O(n) (we have to find the index to insert and shift elements to perform insertion).
- Delete maximum is O(1) (just take the last element which will the maximum).

```
public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
   private Key[] pq; // elements
   private int n; // number of elements
   // set initial size of heap to hold size elements
   public OrderedArrayMaxPQ(int capacity) {
       pq = (Key[]) (new Comparable[capacity]);
       n = 0:
   }
   public boolean isEmpty() { return n == 0; }
   public int size() { return n; }
   public Key delMax() { return pq[--n]; }
   public void insert(Key key) {
       int i = n-1;
       while (i >= 0 && less(key, pq[i])) {
           pq[i+1] = pq[i];
                                             // Empty element is at index i
           i--;
       }
                                            // I+1 to get to the empty element
       pq[i+1] = key;
       n++;
   }
  private boolean less(Key v, Key w) {
       return v.compareTo(w) < 0;</pre>
   }
```

Practice Time

- Given an empty array of capacity 10, perform the following operations in a priority queue based on an ordered array (eager approach):
- 1. Insert P 7. Insert M
- 8. Delete max 2. Insert Q
- 3. Insert E 9. Insert P
- 4. Delete max 10. Insert L
- 5. Insert X
- 6. Insert A

 \bigcirc

123456789

- 11. Insert E
- 12. Delete max

Option 3: Binary heap

- Will allow us to both insert and delete max in O(log n) running time.
- There is no way to implement a priority queue in such a way that insert and delete max can be achieved in O(1) running time.
- Priority queues are synonyms to binary heaps.

Practice Time

- Given an empty binary heap that represents a priority queue, perform the following operations:
- 1. Insert P 7. Insert M
- 8. Delete max 2. Insert Q
- 3. Insert E 9. Insert P
- 4. Delete max
- 5. Insert X
- 6. Insert A

- 10. Insert L
- 11. Insert E
- 12. Delete max

Answer

Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort

Basic plan for heap sort

- Use a priority queue to develop a sorting method that works in two steps:
- 1) Heap construction: build a binary heap with all n keys that need to be sorted.
- Sortdown: repeatedly remove and return the maximum key.

O(n) Heap construction

Ignore all leaves (indices n/2+1,...,n).

Key insight: After sink(a,k,n) completes, the subtree rooted at k is a heap.

Practice Time

Run the first step of heapsort, heap construction, on the array [2,9,7,6,5,8].

Answer: Heap construction

Sortdown

- Remove the maximum, one at a time, but leave in array instead of nulling out.
- while(n>1){
 exch(a, 1, n--);
 sink(a, 1, n);
 }
- Key insight: After each iteration the array consists of a heap-ordered subarray followed by a sub-array in final order.

HEAPSORT

Sortdown

45

Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

Practice Time

Given the heap you constructed before, run the second step of heapsort, sortdown, to sort the array [2,9,7,6,5,8]. Answer: Sortdown

Heapsort analysis

- Heap construction makes O(n) exchanges and O(n) compares.
- Sortdown and therefore the entire heap sort $O(n \log n)$ exchanges and compares.
- ▶ In-place sorting algorithm with *O*(*n* log *n*) worst-case!
- Remember:
 - mergesort: not in place, requires linear extra space.
 - > quicksort: quadratic time in worst case.
- > Heapsort is optimal both for time and space in terms of Big-O, but:
 - Inner loop longer than quick sort.
 - Poor use of cache. Why?
 - Not stable.

Sorting: Everything you need to remember about it!

	Which Sort	In place	Stable	Best	Average	Worst	Remarks
	Selection	Х		$O(n^2)$	$O(n^2)$	$O(n^2)$	n exchanges
	Insertion	Х	Х	O(n)	$O(n^2)$	$O(n^2)$	Use for small arrays or partially ordered
	Merge		Х	$O(n\log n)$	$O(n\log n)$	$O(n \log n)$	Guaranteed performance; stable
	Quick	Х		$O(n\log n)$	$O(n \log n)$	$O(n^2)$	<i>n</i> log <i>n</i> probabilistic guarantee; fastest!
-	Неар	Х		$O(n\log n)$	$O(n \log n)$	$O(n \log n)$	Guaranteed performance; in place

Lecture 22: Priority Queues and Heapsort

- Priority Queue
- Heapsort

Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327), 2.5 (336-344)
- Website:
 - Priority Queues: <u>https://algs4.cs.princeton.edu/24pq/</u>
- Visualization:
 - Create (nlogn) and heapsort: <u>https://visualgo.net/en/heap</u>

Practice Problems:

> 2.4.1-2.4.11. Also try some creative problems.

Readings:

- Textbook:
 - Chapter 2.4 (Pages 308-327)
- Website:
 - Priority Queues: <u>https://algs4.cs.princeton.edu/24pq/</u>
- Visualization:
 - Insert and ExtractMax: <u>https://visualgo.net/en/heap</u>

Practice Problems:

> Practice with traversals of trees and insertions and deletions in binary heaps