
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

16: Quicksort, Binary Trees and Heaps

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki 
she/her/hers

Tom Yeh 
he/him/his

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Quicksort, Binary Trees and Heaps

▸ Quicksort

�2

QUICKSORT

Algorithm sketch:
▸ Shuffle the array.

▸ Partition so that, for some pivot j:

▸ Entry a[j] is in place.

▸ There is no larger entry to the left of j.

▸ No smaller entry to the right of j.

▸ Sort each subarray recursively.

�3

QUICKSORT

Quicksort Trace

 private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

�4

QUICKSORT

Great algorithms are better than good ones

‣ Your laptop executes comparisons per second
‣ A supercomputer executes comparisons per second

108

1012

Insertion
sort

Mergesort Quicksort

Computer
Thousa

nd
inputs

Millio
n

inputs

Billion
inputs

Thousa
nd

inputs

Million
inputs

Billion
inputs

Thousa
nd

inputs

Million
inputs

Billion
inputs

Home Instant 2
hours

300
years instant 1 sec 15 min Instant 0.5 sec 10 min

Supercom
puter Instant

1
secon

d

1
week instant instant instant instant instant Instant

�5

QUICKSORT

Quicksort analysis: best case

‣ Quicksort divides everything exactly in half.
‣ Similar to merge sort.
‣ Number of compares is ~ .n log n

�6

QUICKSORT

Quicksort analysis: worst case

‣ Data are already sorted or we pick the smallest or largest key as
pivot.

‣ Number of compares is ~ - quadratic!
‣ Extremely unlikely (less likely than the probably that your computer is

struck by lightning) if we shuffle and our shuffling is not broken.

n2

�7

QUICKSORT

Things to remember about quick sort

‣ average, worst, in practice faster than mergesort.

‣ 39% more compares than merge sort but in practice it is faster
because it does not move data much.
‣ Compare and increment pointer
‣ Mergesort moves items into and out of aux array

‣ Random shuffle = probabilistic guarantee against worst case

‣ In-place sorting.
‣ Not stable.

O(n log n) O(n2)

�8

QUICKSORT

Quicksort practical improvements

‣ Use insertion sort for small subarrays.
‣ Best choice of pivot is the median of a small sample.

▸ For years, Java used quicksort for collections of
primitives and mergesort for collections of objects due
to stability.

▸ Has moved to dual-pivot quick sort (Yaroslavskiy,
Bentley, and Bloch, 2009) and timsort (Peters, 1993),
respectively.

�9

QUICKSORT

Sorting: the story so far

Which
Sort

In
place

Stable Best Average Worst Remarks

Selection X exchanges

Insertion X X Use for small arrays
or partially ordered

Merge X Guaranteed
performance; stable

Quick X
 probabilistic

guarantee; fastest in
practice

O(n2) O(n2) O(n2) n

O(n2) O(n2)O(n)

O(n log n) O(n log n) O(n log n)

�10

O(n log n) O(n log n) O(n2)
n log n

QUICKSORT

Sorting based on comparisons

‣ All sorting algorithms we have seen so far and we will see
in this class are compare-based.

‣ No compare-based sorting algorithm can sort elements
in less than time in the worst case.
‣ Proof and proper notation in CS140.

n
O(n log n)

�11

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.3 (Pages 288-296)

▸ Website:

▸ Quicksort: https://algs4.cs.princeton.edu/23quicksort/

▸ Code: https://algs4.cs.princeton.edu/23quicksort/Quick.java.html

�12

Practice Problems:

▸ 2.3.1-2.3.4

https://algs4.cs.princeton.edu/23quicksort/
https://algs4.cs.princeton.edu/23quicksort/Quick.java.html

THE STORY SO FAR

Basic data structures

▸ Arrays,

▸ Resizing arrays or arraylists,

▸ Linked Lists,

▸ Queues, and

▸ Stacks.

▸ Runtime and memory analysis for each one.

�13

THE STORY SO FAR

Sorting

▸ Selection sort,

▸ Insertion sort,

▸ Mergesort, and

▸ Quicksort.

▸ Runtime (comparisons and exchanges), stability, in-place for each
one.

▸ Comparators: How to sort a data structure with objects of any class.

▸ Iterators: How to traverse a data structure.

�14

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees and Heaps

▸ Binary Trees

▸ Tree traversals

▸ Binary Heaps

�15

BINARY TREES

Trees in Computer Science

▸ Abstract data types that store elements hierarchically rather than linearly.

▸ Examples of hierarchical structures:

▸ Organization charts for

▸ Companies (CEO at the top followed by CFO, CMO, COO, CTO, etc).

▸ Universities (Board of Trustees at the top, followed by President, then by
VPs, etc).

▸ Sitemaps (home page links to About, Products, etc. They link to other pages).

▸ Computer file systems (user at top followed by Documents, Downloads,
Music, etc. Each folder can hold more folders.).

�16

BINARY TREES

Trees in Computer Science

▸ Hierarchical: Each element in a tree has a single parent
(immediate ancestor) and zero or more children
(immediate descendants).

�17

Real tree root and leaves

CS tree root and leaves

BINARY TREES

Definition of a tree

▸ A tree � is a set of nodes that store elements based on a
parent-child relationship:

▸ If � is non-empty, it has a node called the root of � , that has
no parent.

▸ Here, the root is A.

▸ Each node �, other than the root, has a unique parent node
�. Every node with parent � is a child of �.

▸ E.g., E’s parent is C and F has two children, H and I.

T

T T

v
u u u

�18

BINARY TREES

Tree Terminology

�19

▸ Edge: a pair of nodes s.t. one is the parent of the other, e.g., (K,C).

▸ Parent node is directly above child node, e.g., K is parent of C and N.

▸ Sibling nodes have same parent, e.g., A and F.

▸ K is ancestor of B.

▸ B is descendant of K.

▸ Node plus all descendants gives subtree.

▸ Nodes without descendants are called leaves or external. The rest are called
internal.

▸ A set of trees is called a forest.

BINARY TREES

More Terminology

�20

▸ Simple path: a series of distinct nodes s.t. there are edges between
successive nodes, e.g., K-N-V-U.

▸ Path length: number of edges in path, e.g., path K-C-A has length 2.

▸ Height of node: length of longest path from the node to a leaf.

▸ Height of tree: length of longest path from the root to a leaf.

▸ Degree of node: number of its children.

▸ Degree of tree (arity): max degree of any of its nodes.

▸ Binary tree: a tree with arity of 2.

BINARY TREES

Even More Terminology

�21

▸ Level/depth of node defined recursively:

▸ Root is at level 0.

▸ Level of any other node is equal to level of parent + 1.

▸ It is also known as the length of path from root or number of
ancestors excluding itself.

▸ Height of node defined recursively:

▸ If leaf, height is 0.

▸ Else, height is max height of child + 1.

BINARY TREES

But wait there’s more!

�22

▸ Full (or proper): a binary tree whose every node has 0 or 2
children.

▸ Complete: a binary tree with minimal height. Any holes in
tree would appear at last level to right, i.e., all nodes of last
level are as left as possible.

BINARY TREES �23

http://code.cloudkaksha.org/binary-tree/types-binary-tree

▸ A: Full

▸ B: Complete

▸ C: Full and Complete

▸ D: Neither Full nor Complete

BINARY TREES

Practice Time: This tree is

�24

▸ A: Full

▸ B: Complete

▸ C: Full and Complete

▸ D: Neither Full nor Complete

BINARY TREES

Answer

�25

▸ A: Full

▸ B: Complete

▸ C: Full and Complete

▸ D: Neither Full nor Complete

BINARY TREES

Practice Time: This tree is

�26

▸ A: Full

▸ B: Complete

▸ C: Full and Complete

▸ D: Neither Full nor Complete

BINARY TREES

Answer

�27

BINARY TREES

Counting in binary trees

�28

▸ Lemma: if � is a binary tree, then at level �, � has � nodes.

▸ E.g., at level 2, at most 4 nodes (A, F, M, V)

▸ Theorem: If � has height �, then # of nodes � in � satisfy:
� .

▸ Equivalently, if � has � nodes, then � .

▸ Worst case: When � or � , the tree looks like a left or right-
leaning “stick”.

▸ Best case: When a tree is as compact as possible (e.g., complete) it has
� height.

T k T ≤ 2k

T h n T
h + 1 ≤ n ≤ 2h+1 − 1

T n log(n + 1) − 1 ≤ h ≤ n − 1

h = n − 1 O(n)

O(log n)

http://code.cloudkaksha.org/binary-tree/types-binary-tree

BINARY TREES

Basic idea behind a simple implementation

�29

public class BinaryTree<Item> {
private Node root;

/**
 * A node subclass which contains various recursive methods
 *
 * @param <Item> The type of the contents of nodes
 */
private class Node {

private Item item;

private Node left;
private Node right;  

/**
 * Node constructor with subtrees
 *
 * @param left the left node child
 * @param right the right node child
 * @param item the item contained in the node
 */
public Node(Node left, Node right, Item item) {

this.left = left;
this.right = right;
this.item = item;

}

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees and Heaps

▸ Binary Trees

▸ Tree traversals

▸ Binary Heaps

�30

TREE TRAVERSALS

Pre-order traversal

�31

▸ Preorder(Tree)

▸ Mark root as visited

▸ Preorder(Left Subtree)

▸ Preorder(Right Subtree)

▸ K C A B F D H N M V U

TREE TRAVERSALS

In-order traversal

�32

▸ Inorder(Tree)

▸ Inorder(Left Subtree)

▸ Mark root as visited

▸ Inorder(Right Subtree)

▸ A B C D F H K M N U V

TREE TRAVERSALS

Post-order traversal

�33

▸ Postorder(Tree)

▸ Postorder(Left Subtree)

▸ Postorder(Right Subtree)

▸ Mark root as visited

▸ B A D H F C M U V N K

TREE TRAVERSALS

Level-order traversal

�34

▸ From left to right, mark nodes of level � as visited before
nodes in level � . Start at level 0.

▸ K C N A F M V B D H U

i
i + 1

TREE TRAVERSALS

Practice Time

�35

▸ List the nodes in pre-order, in-order, post-order, and level
order:

TREE TRAVERSALS

Answer

�36

▸ Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3

▸ In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11

▸ Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8

▸ Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees and Heaps

▸ Binary Trees

▸ Tree traversals

▸ Binary Heaps

�37

BINARY HEAP

Heap-ordered binary trees

▸ A binary tree is heap-ordered if the key in each node is larger than
or equal to the keys in that node’s two children (if any).

▸ Equivalently, the key in each node of a heap-ordered binary tree is
smaller than or equal to the key in that node’s parent (if any).

▸ No assumption of which child is smaller.

▸ Moving up from any node, we get a non-decreasing sequence of
keys.

▸ Moving down from any node we get a non-increasing sequence of
keys.

�38

BINARY HEAP

Heap-ordered binary trees

▸ The largest key in a heap-ordered binary tree is found at
the root!

�39

BINARY HEAP

Binary heap representation

▸ We could use a linked representation but we would need
three links for every node (one for parent, one for left
subtree, one for right subtree).

▸ If we use complete binary trees, we can use instead an
array.

▸ Compact arrays vs explicit links means memory savings!

�40

BINARY HEAP

Binary heaps

▸ Binary heap: the array representation of a complete heap-
ordered binary tree.

▸ Items are stored in an array such that each key is
guaranteed to be larger (or equal to) than the keys at
two other specific positions (children).

▸ Max-heap but there are min-heaps, too.

�41

BINARY HEAP

Array representation of heaps

▸ Nothing is placed at index 0.

▸ Root is placed at index 1.

▸ Rest of nodes are placed  
in level order.

▸ No unnecessary indices and
no wasted space because it’s
complete.

�42

BINARY HEAP

Reuniting immediate family members.

▸ For every node at index �, its parent is at index � .

▸ Its two children are at indices � and � .

▸ We can travel up and down the heap by using this simple
arithmetic on array indices.

k ⌊k/2⌋

2k 2k + 1

�43

BINARY HEAP

Swim/promote/percolate up/bottom up reheapify

▸ Scenario: a key becomes larger than its parent therefore it
violates the heap-ordered property.

▸ To eliminate the violation:

▸ Exchange key in child with key in parent.

▸ Repeat until heap order restored.

�44

BINARY HEAP

Swim/promote/percolate up

private void swim(int k) {
 while (k > 1 && less(k/2, k)) {
 exch(k, k/2);
 k = k/2;
 }
}

�45

BINARY HEAP

Binary heap: insertion

�46

▸ Insert: Add node at end in bottom
level, then swim it up.

▸ Cost: At most � compares. 
 
public void insert(Key x) {  
 pq[++n] = x;  
 swim(n);  
}

log n + 1

BINARY HEAP

Practice Time

�47

▸ Insert 47 in this binary heap.

BINARY HEAP

Answer

�48

BINARY HEAP

Sink/demote/top down heapify

▸ Scenario: a key becomes smaller than one (or both) of its
children’s keys.

▸ To eliminate the violation:

▸ Exchange key in parent with key in larger child.

▸ Repeat until heap order is restored.

�49

BINARY HEAP

Sink/demote/top down heapify

private void sink(int k) {
 while (2*k <= n) {
 int j = 2*k;
 if (j < n && less(j, j+1))
 j++;
 if (!less(k, j))
 break;
 exch(k, j);
 k = j;
 }
}

�50

BINARY HEAP

Practice Time

�51

▸ Sink 7 to its appropriate place in this binary heap.

BINARY HEAP

Answer

�52

BINARY HEAP

Binary heap: return (and delete) the maximum

�53

▸ Delete max: Exchange root with node at end. Return it and delete
it. Sink the new root down.

▸ Cost: At most � compares. 
 
public Key delMax() {  
 Key max = pq[1];  
 exch(1, n--);  
 sink(1);  
 pq[n+1] = null;  
 return max;  
}

2 log n

BINARY HEAP

Binary heap: delete and return maximum

�54

BINARY HEAP

Practice Time

�55

▸ Delete max (and return it!)

BINARY HEAP

Answer

�56

BINARY HEAP

Things to remember about runtime complexity of heaps

�57

▸ Insertion is � .

▸ Delete max is � .

▸ Space efficiency is � .

O(log n)

O(log n)

O(n)

�58

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Binary Trees and Heaps

▸ Binary Trees

▸ Tree traversals

▸ Binary Heaps

�59

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.4 (Pages 308-327)

▸ Website:

▸ Priority Queues: https://algs4.cs.princeton.edu/24pq/

▸ Visualization:

▸ Insert and ExtractMax: https://visualgo.net/en/heap

�60

Practice Problems:

▸ Practice with traversals of trees and insertions and deletions in binary heaps

https://algs4.cs.princeton.edu/24pq/
https://visualgo.net/en/heap

