CS062 DATA STRUCTURES AND ADVANCED PROGRAMMING

16: Quicksort, Binary Trees and Heaps

Alexandra Papoutsaki she/her/hers

Tom Yeh he/him/his Lecture 16: Quicksort, Binary Trees and Heaps

Quicksort

Algorithm sketch:

- Shuffle the array.
- Partition so that, for some pivot j:
 - Entry a[j] is in place.
 - > There is no larger entry to the left of j.
 - No smaller entry to the right of j.
- Sort each subarray recursively.

Quicksort overview

QUICKSORT			pr	'iva	te	sta	tic	V0 ⁻	id :	sort	t <mark>(</mark> Co	ompo	aral	ble	[] (a	int	lo	, ir	nt hi)	{
Quicksort Tra	ace		}	ı i s	t (nt ort	nı j = <mark>(</mark> a,	<= pa lo j+	rti [.]	re tio -1)	turr n(a _: ;	ז;										-
initial values random shuffle	10	j	hi	0 Q K	1 U R	2 I A	3 C T	4 K E	5 S L	6 0 E	7 R P	8 T U	9 E I	10 X M	11 A 0	12 M C	<u>13</u> P X	14 L 0	15 E S		
	0	5	15	E	C	A	I	E	ĸ	Ĺ	P	Ū	T	Μ	Q	R	X	ō	S		
	0	3	4	Е	С	А	Е	I	Κ	L	Ρ	U	Т	М	Q	R	Х	0	S		
	0	2	2	Α	С	Е	Е	I	Κ	L	Ρ	U	Т	М	Q	R	Х	0	S		
	0	0	1	Α	С	Е	Е	I	Κ	L	Ρ	U	Т	М	Q	R	Х	0	S		
	1		1	Α	С	Е	Е	I	Κ	L	Ρ	U	Т	М	Q	R	Х	0	S		
	-4		4	Α	С	Е	Е	I	Κ	L	Ρ	U	Т	М	Q	R	Х	0	S		
//	6	6	15	A	С	Е	Е	Ι	Κ	L	Ρ	U	Т	М	Q	R	Х	0	S		
no partition for subarrays	7	9	15	A	C	Е	Е	Ι	Κ	L	М	0	Ρ	Т	Q	R	Х	U	S		
of size 1	7	7	8	A	C	E	E	Ι	Κ	L	М	0	Ρ	Т	Q	R	Х	U	S		
	8		8	A	C	E	E	I	K	L	М	0	P	Т	Q	R	X	U	S		
	10	13	15	A	C	E	E	Ţ	K	- L	M	0	P	S	Q	R	Ţ	U	X		
	10	12	12	A	C	E	E	Ţ	K	-	M	0	P	R	Q	2	+	0	X		
\` \`	10	11	11	A	C	E	E	T	K V		M	0	P	Q	R	2	T	0	×		
```````````````````````````````````````	14	14	15	A.	C	E	E	T	. N	-	M	0	- <u>r</u>	0	D	0		- U	v		
	\ <b>14</b> 15	14	15 15	A	C	Ē	Ē	Ī	K	Ľ	M	0	P	Q	R	S	Ť	U	X		
result				Α	c	Ε	Ε	I	к	L	М	0	Ρ	Q	R	S	т	U	х		

Great algorithms are better than good ones

- Your laptop executes  $10^8$  comparisons per second
- A supercomputer executes  $10^{12}$  comparisons per second

		ertio sort	on	Με	erges	ort	Quicksort				
Computer	Thousa nd inputs	Millio n inputs Billion inputs		Thousa nd inputs	Million inputs	Billion inputs	Thousa nd inputs	Million inputs	Billion inputs		
Home	Instant	2 hours	300 years	instant	1 sec	15 min	Instant	0.5 sec	10 min		
Supercom puter	Instant	1 secon d	1 week	instant	instant	instant	instant	instant	Instant		

Quicksort analysis: best case

- Quicksort divides everything exactly in half.
- Similar to merge sort.
- Number of compares is ~ $n \log n$ .

Quicksort analysis: worst case

- Data are already sorted or we pick the smallest or largest key as pivot.
- Number of compares is  $\sim n^2$  quadratic!
- Extremely unlikely (less likely than the probably that your computer is struck by lightning) if we shuffle and our shuffling is not broken.

Things to remember about quick sort

- $O(n \log n)$  average,  $O(n^2)$  worst, in practice faster than mergesort.
- 39% more compares than merge sort but in practice it is faster because it does not move data much.
  - Compare and increment pointer
  - Mergesort moves items into and out of aux array
- Random shuffle = probabilistic guarantee against worst case
- In-place sorting.
- Not stable.

Quicksort practical improvements

- Use insertion sort for small subarrays.
- Best choice of pivot is the median of a small sample.
- For years, Java used quicksort for collections of primitives and mergesort for collections of objects due to stability.
  - Has moved to dual-pivot quick sort (Yaroslavskiy, Bentley, and Bloch, 2009) and timsort (Peters, 1993), respectively.

#### Sorting: the story so far

Which Sort	In place	Stable	Best	Average	Worst	Remarks
Selection	X		$O(n^2)$	$O(n^2)$	$O(n^2)$	n exchanges
Insertion	X	X	<i>O</i> ( <i>n</i> )	$O(n^2)$	$O(n^2)$	Use for small arrays or partially ordered
Merge		X	$O(n\log n)$	$O(n\log n)$	$O(n \log n)$	Guaranteed performance; stable
Quick	X		$O(n \log n)$	$O(n \log n)$	$O(n^2)$	<i>n</i> log <i>n</i> probabilistic guarantee; fastest in practice

Sorting based on comparisons

- All sorting algorithms we have seen so far and we will see in this class are compare-based.
- No compare-based sorting algorithm can sort n elements in less than O(n log n) time in the worst case.
  - Proof and proper notation in CS140.

#### **Readings:**

- Textbook:
  - Chapter 2.3 (Pages 288-296)
- Website:
  - Quicksort: <u>https://algs4.cs.princeton.edu/23quicksort/</u>
  - Code: <u>https://algs4.cs.princeton.edu/23quicksort/Quick.java.html</u>

#### **Practice Problems:**

▶ 2.3.1-2.3.4

Basic data structures

- Arrays,
- Resizing arrays or arraylists,
- Linked Lists,
- Queues, and
- Stacks.
- Runtime and memory analysis for each one.

#### Sorting

- Selection sort,
- Insertion sort,
- Mergesort, and
- Quicksort.
- Runtime (comparisons and exchanges), stability, in-place for each one.
- Comparators: How to sort a data structure with objects of any class.
- Iterators: How to traverse a data structure.

Lecture 16: Binary Trees and Heaps

- Binary Trees
- Tree traversals
- Binary Heaps

#### **Trees in Computer Science**

- > Abstract data types that store elements hierarchically rather than linearly.
- Examples of hierarchical structures:
  - Organization charts for
    - Companies (CEO at the top followed by CFO, CMO, COO, CTO, etc).
    - Universities (Board of Trustees at the top, followed by President, then by VPs, etc).
  - Sitemaps (home page links to About, Products, etc. They link to other pages).
  - Computer file systems (user at top followed by Documents, Downloads, Music, etc. Each folder can hold more folders.).

#### **Trees in Computer Science**

 Hierarchical: Each element in a tree has a single parent (immediate ancestor) and zero or more children (immediate descendants). CS tree root and leaves



Definition of a tree

- A tree T is a set of nodes that store elements based on a parent-child relationship:
  - If T is non-empty, it has a node called the root of T, that has no parent.

18

В

D

Ε

- Here, the root is A.
- Each node v, other than the root, has a unique parent node u. Every node with parent u is a child of u.
  - E.g., E's parent is C and F has two children, H and I.

Tree Terminology

- Edge: a pair of nodes s.t. one is the parent of the other, e.g., (K,C).
- Parent node is directly above child node, e.g., K is parent of C and N.
- Sibling nodes have same parent, e.g., A and F.
- K is ancestor of B.
- B is descendant of K.
- Node plus all descendants gives subtree.
- Nodes without descendants are called leaves or external. The rest are called internal.
- A set of trees is called a forest.



More Terminology

- Simple path: a series of distinct nodes s.t. there are edges between successive nodes, e.g., K-N-V-U.
- Path length: number of edges in path, e.g., path K-C-A has length 2.
- Height of node: length of longest path from the node to a leaf.
- Height of tree: length of longest path from the root to a leaf.
- Degree of node: number of its children.
- Degree of tree (arity): max degree of any of its nodes.
- Binary tree: a tree with arity of 2.



Even More Terminology

- Level/depth of node defined recursively:
  - Root is at level 0.
  - Level of any other node is equal to level of parent + 1.
  - It is also known as the length of path from root or number of ancestors excluding itself.
- Height of node defined recursively:
  - If leaf, height is 0.
  - Else, height is max height of child + 1.



But wait there's more!

- Full (or proper): a binary tree whose every node has 0 or 2 children.
- Complete: a binary tree with minimal height. Any holes in tree would appear at last level to right, i.e., all nodes of last level are as left as possible.



http://code.cloudkaksha.org/binary-tree/types-binary-tree

Practice Time: This tree is

- A: Full
- B: Complete
- C: Full and Complete





#### Answer

- A: Full
- B: Complete
- C: Full and Complete





Practice Time: This tree is

- A: Full
- B: Complete
- C: Full and Complete
- D: Neither Full nor Complete



#### Answer

- A: Full
- B: Complete
- C: Full and Complete
- D: Neither Full nor Complete



Counting in binary trees

- Lemma: if T is a binary tree, then at level k, T has  $\leq 2^k$  nodes.
  - E.g., at level 2, at most 4 nodes (A, F, M, V)
- Theorem: If T has height h, then # of nodes n in T satisfy:  $h+1 \le n \le 2^{h+1} - 1.$
- Equivalently, if T has n nodes, then  $log(n + 1) 1 \le h \le n 1$ .
  - Worst case: When h = n 1 or O(n), the tree looks like a left or right-leaning "stick".
  - Best case: When a tree is as compact as possible (e.g., complete) it has O(log n) height.





#### Basic idea behind a simple implementation

```
public class BinaryTree<Item> {
 private Node root;
 /**
 * A node subclass which contains various recursive methods
 *
 @param <Item> The type of the contents of nodes
 *
 */
 private class Node {
 private Item item;
 a left link
 private Node left;
 a subtree
 private Node right;
 /**
 * Node constructor with subtrees
 *
 * @param left the left node child
 * @param right the right node child
 * @param item the item contained in the node
 */
 public Node(Node left, Node right, Item item) {
 this.left = left;
 this.right = right;
 this.item = item;
 }
```

root

a leaf node

null links

Lecture 16: Binary Trees and Heaps

- Binary Trees
- Tree traversals
- Binary Heaps

Pre-order traversal

- Preorder(Tree)
  - Mark root as visited
  - Preorder(Left Subtree)
  - Preorder(Right Subtree)
- KCABFDHNMVU



In-order traversal

- Inorder(Tree)
  - Inorder(Left Subtree)
  - Mark root as visited
  - Inorder(Right Subtree)
- ABCDFHKMNUV



Post-order traversal

- Postorder(Tree)
  - Postorder(Left Subtree)
  - Postorder(Right Subtree)
  - Mark root as visited
- BADHFCMUVNK



Level-order traversal

From left to right, mark nodes of level i as visited before nodes in level i + 1. Start at level 0.



#### **Practice Time**

List the nodes in pre-order, in-order, post-order, and level order:



#### Answer

- Pre-order: 8, 5, 9, 7, 1, 12, 2, 4, 11, 3
- In-order: 9, 5, 1, 7, 2, 12, 8, 4, 3, 11
- Post-order: 9, 1, 2, 12, 7, 5, 3, 11, 4, 8
- Level-order: 8, 5, 4, 9, 7, 11, 1, 12, 3, 2



36

Lecture 16: Binary Trees and Heaps

- Binary Trees
- Tree traversals
- Binary Heaps

Heap-ordered binary trees

- A binary tree is heap-ordered if the key in each node is larger than or equal to the keys in that node's two children (if any).
- Equivalently, the key in each node of a heap-ordered binary tree is smaller than or equal to the key in that node's parent (if any).
- No assumption of which child is smaller.
- Moving up from any node, we get a non-decreasing sequence of keys.
- Moving down from any node we get a non-increasing sequence of keys.

Heap-ordered binary trees

The largest key in a heap-ordered binary tree is found at the root!



**Binary heap representation** 

- We could use a linked representation but we would need three links for every node (one for parent, one for left subtree, one for right subtree).
- If we use complete binary trees, we can use instead an array.
  - Compact arrays vs explicit links means memory savings!

# Binary heaps

- Binary heap: the array representation of a complete heapordered binary tree.
  - Items are stored in an array such that each key is guaranteed to be larger (or equal to) than the keys at two other specific positions (children).
- Max-heap but there are min-heaps, too.

Array representation of heaps

- Nothing is placed at index 0.
- Root is placed at index 1.
- Rest of nodes are placed in level order.
- No unnecessary indices and no wasted space because it's complete.



Heap representations

Reuniting immediate family members.

- For every node at index k, its parent is at index  $\lfloor k/2 \rfloor$ .
- Its two children are at indices 2k and 2k + 1.
- We can travel up and down the heap by using this simple arithmetic on array indices.

Swim/promote/percolate up/bottom up reheapify

- Scenario: a key becomes larger than its parent therefore it violates the heap-ordered property.
- To eliminate the violation:
  - Exchange key in child with key in parent.
  - Repeat until heap order restored.



Swim/promote/percolate up

```
private void swim(int k) {
 while (k > 1 \&\& less(k/2, k)) {
 exch(k, k/2);
 R
 k = k/2;
 }
 G
}
 violates heap order
 G
 Η
 Е
 (larger key thân parent)
 Ρ
```

Binary heap: insertion

- Insert: Add node at end in bottom level, then swim it up.
- Cost: At most  $\log n + 1$  compares.

```
public void insert(Key x) {
 pq[++n] = x;
 swim(n);
}
```



**Practice Time** 

Insert 47 in this binary heap.



Answer





Sink/demote/top down heapify

- Scenario: a key becomes smaller than one (or both) of its children's keys.
- To eliminate the violation:
  - > Exchange key in parent with key in **larger** child.
  - Repeat until heap order is restored.



Sink/demote/top down heapify



**Practice Time** 

Sink 7 to its appropriate place in this binary heap.



### Answer



}

Binary heap: return (and delete) the maximum

- Delete max: Exchange root with node at end. Return it and delete it. Sink the new root down.
- ▶ Cost: At most 2 log *n* compares.

```
public Key delMax() {
 Key max = pq[1];
 exch(1, n--);
 sink(1);
 pq[n+1] = null;
 return max;
```

Binary heap: delete and return maximum



**Practice Time** 

Delete max (and return it!)





Answer



Things to remember about runtime complexity of heaps

- Insertion is  $O(\log n)$ .
- Delete max is  $O(\log n)$ .
- Space efficiency is O(n).

# Algorithms

#### ROBERT SEDGEWICK | KEVIN WAYNE

# 2.4 BINARY HEAP DEMO



*

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Lecture 16: Binary Trees and Heaps

- Binary Trees
- Tree traversals
- Binary Heaps

# **Readings:**

- Textbook:
  - Chapter 2.4 (Pages 308-327)
- Website:
  - Priority Queues: <u>https://algs4.cs.princeton.edu/24pq/</u>
- Visualization:
  - Insert and ExtractMax: <u>https://visualgo.net/en/heap</u>

## **Practice Problems:**

> Practice with traversals of trees and insertions and deletions in binary heaps