£35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

11: Sorting Fundamentals and Comparators

Tom Yeh
he/him/his

" 4 \ Alexandra Papoutsaki
@Y% ' shelher/hers

2

INTRODUCTION

Bio: Professional

e Dr.Tom Yeh
o Ph.D. - UCLA
o B.S. - UC Berkeley

e Research Interests

- Computer Architecture

- Machine Learning (N

. Architectural Acceleration of Machine ering:
Ultra-low precision training and inference

e Computer architect by training. Worked on
CPU designs at a startup, Intel, Sun Micro.

INTRODUCTION

Bio: Personal Interests

TODAY'S LECTURE IN A NUTSHELL

Lecture 11: Sorting Fundamentals

» Midterm Grade Distribution
» lterator and Iterable Interfaces

» Sorting

Some slides adopted from Algorithms 4th Edition or COS226

Grade Statistics for Midterm |

Grade Distribution

12
2 10
c
5
S 8
|
N
“ 6
o
0 4
o
> 2
0 " B ,
0-50 50-60 60-70 70-80 90-100

Percentage Scored

Average (mean) grade 64.94
Median grade 67.00
Standard deviation 8.25
Lowest grade 46.00
Highest grade 77.00 Maximum = 80
Total graded 32

ITERATORS

Iterable Interface

» What is an Iterable?

» Class with a method that returns an Iterator
» What is an Iterator?

» Class with methods hasNext() and next()
» Why make data structures lterable?

» To support elegant code

» Interface that allows an object to be the target of
a for-each loop:

// "foreach" statement (shorthand)
for(String s: stack){
System.out.println(s);

}

myList.forEach(System.out: :println);

public interface Iterable<Item>

{
¥

Iterable<Item> iterator();

public interface Iterator<Item>
{

boolean hasNext();

Item next();

vold remove; // don't use

// equivalent code (longhand)
Iterator<String> 1 = stack.iterator();
while (1.hasNext()
{
String s = i1.next();
StdOut.println(s);

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

ITERATORS

Example: making ArrayList iterable
» Start with a class, implement iterable, within class you will implement iterator

public class ArraylList<Item> implements Iterable<Item> {
// Have the class implement Iterable

public Iterator<Item> iterator() {
// Need this method iterator that returns an iterator
return new ArraylListIterator();

}

// Have this inner class which implements Iterator
private class ArraylListIterator implements Iterator<Item> {

private int 1 = 0;

public boolean hasNext() {
return 1 < n;

}

public Item next() {
return ali++];

}

public void remove() {
throw new UnsupportedOperationException();

ITERATORS

Example: making Stack iterable (linked-list implementation)

public class Stack<Item> implements Iterable<Item> {
// Have the class implement Iterable

public Iterator<Item> iterator() {
// Need this method iterator that returns an iterator
return new stackIterator();

}

// Have this inner class which implements Iterator

private class stackIterator implements Iterator<Item> {
//

private Node current = first;

public boolean hasNext() {
return current != null;

}

public Item next() {
Item 1tem = current.item;
current = current.next;
return item;

}

public void remove() {
throw new UnsupportedOperationException();

ITERATORS 9

Iterator Interface

» Interface that allows us to traverse a collection one element
at a time.

public interface Iterator<E> {
//returns true i1f the iteration has more elements
//that 1s 1f next() would return an element instead of throwing an exception
boolean hasNext();

//returns the next element in the iteration
//post: advances the iterator to the next value
E next();

//removes the last element that was returned by next
//optional, better avoid it altogether
// default void remove();

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

ITERATORS

Traversing ArraylList

* Once you implement the Iterable interface, here are some valid ways to traverse ArrayList and print its
elements one by one.

for(String elt:al) {
System.out.println(Celt);

¥

al.forEach(System.out: :println);

al.iterator().forEachRemaining(System.out: :println);

» lterable: https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

TODAY'S LECTURE IN A NUTSHELL

11

Lecture 11: Sorting Fundamentals

» Introduction
» Selection sort

» Insertion sort

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION

Why study sorting?

FedEx packages

contacts

» It's more common than you think: e.g., sorting flights by
price, contacts by last name, files by size, emails by day
sent, neighborhoods by zipcode, etc.

» Good example of how to compare the performance of
different algorithms for the same problem.

» Some sorting algorithms relate to data structures.

» Sorting your data will often be a good starting point when
solving other problems (keep that in mind for interviews).

INTRODUCTION

Definitions

» Sorting: the process of arranging n items of a collection in non-

decreasing order (e.g., numerically or alphabetically).

» Rearrange array of N items into ascending order

» Key: assuming that an item consists of multiple components, the key is

the property based on which we sort items.

» Goal: sort any type of data according to the key

Key ——

Chen
Rohde

Cazsi

Kanaga
Andrews

Battle

3
2

3
4

-
A

&
E

991-878-4944

232-343-5555

766-093-9873

898-122-9643

664-480-0023

874-088-1212

308 Blair

343 Forbes

101 Brown

22 Brown
097 Little

121 Whitman

Andrews
Battle
Chen
Furia
GCazsi

Kanaga

Rohde

> W W > > O P

664-480-0023

874-088-1212

991-878-4944

766-093-9873

766-093-9873

898-122-9643

232-343-5555

INTRODUCTION

Total order: It must be possible to put items in order

» Sorting is well defined if and only if there is total order.

» Total order: a binary relation < on a set C that satisfies the following
statements for all v, w, and x in C:

» Connexity: v <worw <.
» Transitivity: forall v, w, x, if v <wandw < xthenv < x.
» Antisymmetry: if bothv <wandw <v,thenv =w.

» Ex: standard order for numbers, alphabetical order for strings,
1 sors P
chronological order for dates o o

') stane

Stone
blunts
scissors R, A

INTRODUCTION

How many different algorithms for sorting can there be?

» Adaptive » Comb sort » Pancake sort
heapsort
Flashsort Quicksort
» Bitonic sorter
Gnome sort Radixsort

» Block sort
» Bubble sort
» Bucket sort

» Cascade
mergesort

» Cocktail sort

Heapsort
Insertion sort
Library sort
Mergesort

Odd-even sort

Selection sort
Shell sort
Spaghetti sort

Treesort

INTRODUCTION

Rules of the game - Comparing

» We will be sorting arrays of n items, where each item contains a key. In Java,
objects are responsible in telling us how to naturally compare their keys.

» Let's say we want to sort an array of objects of type T.

» Ourclass T should implement the Comparable interface (more on this in a

few lectures). We will need to implement the compareTo method to satisfy
a total order.

sort implementation

» Sort has no dependence on data type public static void sort(Comparable[] a)

Comparable interface (built in to Java) {
int N = a.length;
public interface Comparable<Item> for (int 1 = 0; 1 < N; i++)
{ for (int j =1; j > 0; j--)
public int comparelTo(Item that); if (a[j].compareTo(a[j-1]1) < 0)
}

else break;

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html }

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

INTRODUCTION

Rules of the game - Comparing

» public int compareTo(T that)

» Implement it so that v.compareTo(w):
» Returns >0 (positive) if v is greater than w.
» Returns <0 (negative) if v is smaller than w.
» Returns 0 if v is equal to w.
» Is a total order.
» Java classes such as Integer, Double, String, File all implement Comparable.

» Need to implement the Comparable interface for user-defined comparable types.

» compareTo allows us to use the same sorting algorithms on different data

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable .html

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

TEXT

Implementing the Comparable interface

public int compareTo(Date that)

{

if (this.year
if (this.year
if (this.month
if (this.month
if (this.day
if (this.day
return 0O;

that.year)
that.year)
that.month)
that.month)
that.day)
that.day)

return
return
return
return
return
return

INTRODUCTION

Two primary sorting abstractions

» We will refer to data only through comparisons and exchanges.

» Less: Is Vv less than w?

private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;

h
» Exchange: swap item in array a[] atindex 1 with the one at index

J.
private static void exch(Comparable[] a, int i, int j) {
Comparable swap = ali];

ali]=al[jl;
aljl=swap;

}

» Sort method will use these 2 methods

PRACTICE

Which total order property is violated?

» public class Temperature implements Comparable<Temperature> {

>

>

>

v

private final double degrees;

// Constructor code

public int compareTo(Temperature that) {
double EPSILON = 0.1;
if (this.degrees < that.degrees - EPSILON) return -1;
if (this.degrees > that.degrees + EPSILON) return +1;

return O;

» Connexity: v <worw <,

» Transitivity: for all v, w, x, if
v<wandw < xthenv < x.

» Antisymmetry: if bothv <w
and w <v, thenv = w.

INTRODUCTION
Rules of the game - Cost model

» Sorting cost model: we count compares and exchanges. If
a sorting algorithm does not use exchanges, we count
array accesses.

» Compares, exchanges, array accesses give us an estimate
on the time complexity

» There are other types of sorting algorithms where they are
not based on comparisons (e.g., radixsort). We will not see

these in CS62 but stay tuned for CS5140.

INTRODUCTION
Rules of the game - Memory usage

» Extra memory: often as important as running time. Sorting
algorithms are divided into two categories:

» In place: use constant or logarithmic extra memory,
beyond the memory needed to store the items to be
sorted.

» Not in place: use linear auxiliary memory.

INTRODUCTION

Rules of the game - Stability

» Stable: sort repeated elements in the same order that they
appear in the input.

Stable Not stable
7 5 2 5 7 5 2 5
4999 vy ¥ v v Ad A AQQQ vy ¥ v Vv Ad A
o 4 v A LI v A
v o A v v 9V A AN A A v 9V
/ 2 5 7
vzp v vspv v adh A ZQ A v Vv Ad & vy v AQQQ
v A QQQ A v o 4
A A A AN v v A A v 9V A AN v 9V
l G v 39 v 6L l § G L

https://en.wikipedia.org/wiki/Sorting algorithm#/media/File:Sorting stability playing cards.svg

https://en.wikipedia.org/wiki/Sorting_algorithm#/media/File:Sorting_stability_playing_cards.svg

TODAY'S LECTURE IN A NUTSHELL

24

Lecture 11: Sorting Fundamentals

» Introduction
» Selection sort

» Insertion sort

SELECTION SORT

Selection sort

3 (44 | 38 | 5 | 47 | 1 36 | 26

» Divide the array in two parts: a on the left and an
on the right.

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

344 | 38 | 5 | 47 | 1 36 | 26

y

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 44 | 38 | 5 | 47 | 3 | 36 | 26

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

-44 38| 5 | 47| 3 | 36| 26

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

|m 38| 5 |47 | 3 | 36 | 26

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

-3 38 | 5 | a7 | 22 | 36 | 26

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

-38 s | 47 | 44 | 36 | 26

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

| 5 | 47 | 44 | 36 | 26

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

-5 33 | 47 | a4 | 36 | 26

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

| 47 | 44 | 36 | 26

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

| 44 | 36 | 38

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

| 47 | 38

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

7] a

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

EEENER I E I

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

[47]

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

EEENEREIE I

» Repeat:

» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

» Repeat:
» Find the smallest element in the unsorted subarray.
» Exchange it with the leftmost unsorted element.

» Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

public static void sort(Comparable[] a) {

« Move the pointer to the right.

T4+

« ldentify index of minimum entry on right.

int min = 1;
for (int j = i+1; j < N; Jj++)
if (less(a[j]l, a[min]))
min = j;

« Exchange into position.

exch(a, 1, min);

in final order

!

1

SELECTION SORT

Selection sort

public static void selection sort(Comparable[] a) {
int n = a.length;
for (int 1 = 0; 1 < n; 1++) {
int min = 1i;
for (int j = i+l1l; j < n; j++) {
1if (less(a[]j], a[min]))
min = j;

i — In iteration 1 1

| — Find the index min of the |

I smallest remaining array 1§

}

exch(a, 1, min);

}

» Invariants: At the end of each iteration 1:

» the array a is sorted in ascending order for the first 1+1 elements

» no entry in is smaller than any entry in

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void selection sort(Comparable[] a) {
int n = a.length;
for (int 1 = 0; 1 < n; i++) {
int min = i;
for (int j = i+l; j < n; j++) {
if (less(a[j], a[min]))
min = J;
}
exch(a, i, min);
}
}

» Comparisons:

» Exchanges:

» In-place?

» Stable?

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void selection sort(Comparable[] a) {
int n = a.length;
for (int i = 0; i1 < n; i++) {
int min = 1i;
for (int j = i+l; j < n; j++) {
if (less(a[]J], a[min]))
min = j;
}
exch(a, i, min);
}
}
» Comparisons: 1 +2 4 ...+ (1 —2) + (n — 1)~n?/2, that is O(n?).

» Exchanges:

» In-place?

» Stable?

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void selection sort(Comparable[] a) {
int n = a.length;
for (int 1 = 0; 1 < n; i++) {
int min = 1i;
for (int j = i+l; j < n; j++) {
if (less(a[]j], a[min]))
min = j;
}
exch(a, i, min);
}
}
Comparisons: 1 + 24 ... + (n — 2) + (n — 1)~n?/2, that is O(n?).

v

Exchanges: n or O(n), making it useful when exchanges are expensive.

v

v

Running time is quadratic, even if input is sorted. (Does NOT depend on the input)

v

In-place?

Not stable?

v

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void selection sort(Comparable[] a) {
int n = a.length;
for (int i = 0; 1 < n; i++) {
int min = 1i;
for (int j = i+l; j < n; j++) {
if (less(a[]j], a[min]))
min = j;
}
exch(a, i, min);
}
}
Comparisons: 1 + 24 ... + (n — 2) + (n — 1)~n?/2, that is O(n?).

v

Exchanges: n or O(n), making it useful when exchanges are expensive.

v

v

Running time is quadratic, even if input is sorted. (Does NOT depend on the input)

v

In-place, requires almost no additional memory.

Not stable, think of the array [5_a, 3, 5_b, 1] which will end up as [1, 3, 5_b, 5_a].

v

SELECTION SORT

Practice Time

» Using selection sort, sort the array with elements
[12,10,16,11,9,71.
» Visualize your work for every iteration of the algorithm.

SELECTION SORT

BRI A F
-] e
SENENES
(o]
[

https://subscription.packtpub.com/book/application development/9781785888731/13/ch131vllsec89/selection-sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

TODAY'S LECTURE IN A NUTSHELL

58

Lecture 11: Sorting Fundamentals

» Introduction
» Selection sort

» Insertion sort

INSERTION SORT

Insertion sort

3 (44 | 38 | 5 | 47 | 1 36 | 26

» Keep a on the left and an
the right

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray and insert it
there. (exchange with larger entry to the left)

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 (44 | 38 | 5 | 47 | 1 36 | 26

4

» Repeat:

» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3|44 | 38 | 5 | 47 | 1 36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

-44 38| 5 |47 1 | 36| 26

» Repeat:

» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

-44 38| 5 | 47| 1 | 36 | 26

» Examine the next element in the unsorted subarray.

» Repeat:

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

m 38| 5 |47 | 1 | 36| 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

-38 s | 47| 1 | 36| 26

» Repeat:

» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

-38 s | 47| 1 | 36| 26

» Examine the next element in the unsorted subarray.

» Repeat:

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

5 | 47 | 1 | 36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

m 5 |47 | 1 | 36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:

» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Examine the next element in the unsorted subarray.

» Repeat:

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

47 1 |36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

47 1 | 36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

47 | 1 36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

47 | 1 36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

47 | 1 36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:

» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Examine the next element in the unsorted subarray.

» Repeat:

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 |36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

penisTlsatantiaz] 1 | s | 26

» Repeat:

» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Examine the next element in the unsorted subarray.

» Repeat:

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

36 | 26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:

» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Examine the next element in the unsorted subarray.

» Repeat:

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

R

» Repeat:

» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

26

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

47

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

» Repeat:
» Examine the next element in the unsorted subarray.

» Find the location it belongs within the sorted subarray
and insert it there.

» Move subarray boundaries one element to the right.

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

2.1 INSERTION SORT DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

INSERTION SORT

In case you didn’t get this...

> https://www.youtube.com/watch?v=R0alU37913U

https://www.youtube.com/watch?v=ROalU379l3U

INSERTION SORT

Insertion sort

public static void sort(Comparable[] a) {

« Move the pointer to the right.

T4+

in order not yet seen

« Moving from right to left, exchange
a[i] with each larger entry to its left.

for (int j =1; j > 0; j--)
if (less(alj], alj-11))

} exch(a, j, j-1);
else break; R

in order not yet seen

INSERTION SORT

Insertion sort

public static void sort(Comparable[] a) {
int n = a.length;
for (int 1 = 0; 1 < n; 1i++) {
for (int j = i; j > 0; j--) {
if(less(a[Jj]l, al[J-11))
exch(a, jl j_1)7
else
break;

L — In iteration i
{ — Move from right to left,
fexchange ali] with entry to |
i the left, if it's larger g

}
}

» Invariants: At the end of each iteration 1:

» the array a is sorted in ascending order for the first 1+1 elements

INSERTION SORT

Insertion sort: mathematical analysis for worst-case

public static void sort(Comparable[] a) {
int n = a.length;
for (int 1 = 0; 1 < n; i++) {
for (int j = 1i; 3 > 0; jJ--) {
if(less(al[J], al[Jj-11))
exch(a, j, j-1);
else
break;

}
}
» Comparisons:04+ 1424 ...+ (@ —2) + (n — 1)~n?/2, thatis O(n?).

» Exchanges: ?

» In-place?

» Stable?

INSERTION SORT

Insertion sort: mathematical analysis for worst-case

public static void sort(Comparable[] a) {
int n = a.length;
for (int i = 0; i < n; i++) {
for (int j = 1i; j > 0; j--) {
if(less(a[]j], al[j-11))
exch(a, jl j_1)7
else
break;

}
}
y Comparisons: 04+ 142+ ...+ (1 —2)+ (n— 1)~n?/2, thatis O(n?).

Exchanges: 04+ 142+ ...+ (n —2) + (n — 1)~n?/2, that is O(n?).

v

» Worst-case running time is quadratic. Worst case = array sorted in reverse order.

Every element moves all the way to the left.

v

» In-place, requires almost no additional memory.

» Stable

INSERTION SORT

Insertion sort: average and best case

public static void sort(Comparable[] a) {
int n = a.length;
for (int 1 = 0; 1 < n; i++) {
for (int j = 1i; 3 > 0; j--) {
if(less(alJ], al[J-11))
exch(a, j, j-1);
else
break;

}

» Average case: quadratic for both comparisons and exchanges ~n?/4 when sorting a randomly
ordered array. (2X faster than selection sort on average)

» Expect each entry to move halfway back: 0 + 0.5 + 1 +...(n-1)/2 ~ (n/2)*(n/2) ~ n"2/4

» Best case: n — 1 comparisons (validate) and 0 exchanges for an already sorted array.

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

INSERTION SORT

Practice Time (cards)

» Using insertion sort, sort the array with elements
[12,10,16,11,9,71.
» Visualize your work for every iteration of the algorithm.

INSERTION SORT

Answer

Insertion Sort

11

<[[[[o
I E IS
o [[[[
I CIENEE
[[[[]

B

9
Iast{ 7 I 9

https://subscription.packtpub.com/book/application development/9781785888731/13/ch131vllsec90/insertion-sort?query=insertion%?20sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort
https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

TEXT

Insertion Sort

» For partially-sorted arrays, insertion sort runs in linear time
» Number of exchanges equals number of inversions
» Inversion = pair of keys that are out of order

AEELMOTRXPS

N\

T-R T-P T-S R-P X-P X-S

(6 inversions)

» Ex1: Appending a subarray of size 10 to a sorted subarray of size N

» Ex2: An array of size N with only 10 entries out of place

TODAY'S LECTURE IN A NUTSHELL 124

Lecture 11: Sorting Fundamentals and Comparators

» Introduction
» Selection sort
» Insertion sort

» Comparators

COMPARATORS 125

Comparable

» Interface with a single method that we need to implement:
public 1nt compareTo(T that)

» Implement it so that v.compareTo(w):
» Returns >0 if v is greater than w.
» Returns <0 if v is smaller than w.
» Returns O if v is equal to w.

» Corresponds to natural ordering.

COMPARATORS 126

How to make your class T comparable?

1. Implement Comparable<T> interface.

2. Implement compareTo(T that) method to compare
this T object to that based on natural ordering.

INTERFACE COMPARATOR 127

Comparator

» Sometimes the natural ordering is not the type of ordering we want.

» Comparator is an interface which allows us to dictate what kind of

ordering we want by implementing the method:
public 1nt compare(T this, T that)

» Implement it so that compare(v, w):
» Returns >0 if v is greater than w.
» Returns <0 if v is smaller than w.

» Returns O if vis equal to w.

COMPARATORS 128
How to define an alternative ordering for your class T?

1. Make a new class that implements Comparator<T> interface.

2. Implement compare(T t1l, T t2) methodto compare tl
objectto tZ based on an alternative ordering.

3. Alternatively, implement an anonymous inner class:

public static Comparator<T> nameOfComparator = new Comparator<T>()

{

@0verride // 1indicates method overriding the superclass' method
public int compare(T tl, T t2) {

{
¥

//return something;

b

COMPARATORS

129

The Java Collections Framework

Collections

List

NM

SortedSet AbstactSet

NavigableSet
AbstractSequentlalLlst

TreeSet

Iterable

T

Collection

Queue

Deque

Interface

Abstract Class J

LinkedList

https://en.wikipedia.org/wiki/Java collections framework

Class
AbstactCollectlon
AbstractLlst AbstractQueue
ArraylList Vector PriorityQueue
A
Stack

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework

COMPARATORS 130

Sorting Collections

» Collections class contains:

» public static <T extends Comparable<? super T>> void sort(List<T>
list)

» Generic methods introduce their own type parameters.

» Use extends with generics, even if the type parameter implements an interface.
» The class T itself or one of its ancestors implements Comparable.
» Collections.sort(list)

» Implemented as optimized mergesort, that is timsort.

> If list's elements do not implement Comparable, throw ClassCastException.

COMPARATORS 131

Alternative sorting of Collections

» Collections class contains:

» static <T> void sort(List<T> list, Comparator<? super T>

c)
» Collections.sort(list, someComparator);

» Collections.sort(list, new
ExternalComparatorClass()); or:

» Collections.sort(list, T.InnerAnonymousClass);

> If list's elements do not implement Comparable or cannot be
compared with Comparator, throw ClassCastException.

COMPARATORS 132

Example: Natural and alternative sorting for Employees

https://github.com/pomonacs62202 1fa/l ectureCode/blob/main/
Lecturel l/Employee.java

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

https://github.com/pomonacs622021fa/LectureCode/blob/main/Lecture11/Employee.java
https://github.com/pomonacs622021fa/LectureCode/blob/main/Lecture11/Employee.java
https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

TODAY'S LECTURE IN A NUTSHELL 133

Lecture 11: Sorting Fundamentals and Comparators

» Introduction
» Selection sort
» Insertion sort

» Comparators

ASSIGNED READINGS AND PRACTICE PROBLEMS

134

Readings:

» Textbook:
» Chapter 2.1 (pages 244-262), Chapter 2.1 (Page 247), Chapter 2.5 (Pages 338-339)
» Website:

» Elementary sorts: https://algs4.cs.princeton.edu/21elementary/

» Code: https://algs4.cs.princeton.edu/21elementary/Selection.java.html and
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

» Oracle documentation:

» Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

» Comparable: https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

» Comparator: https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

Practice Problems:

» 2.1.1-2.1.8

https://algs4.cs.princeton.edu/21elementary/
https://algs4.cs.princeton.edu/21elementary/Selection.java.html
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html
https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

