
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

11: Sorting Fundamentals and Comparators

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

Alexandra Papoutsaki 
she/her/hers

Tom Yeh 
he/him/his

INTRODUCTION

Bio: Professional

▸ Dr. Tom Yeh

▸ PhD - UCLA

▸ BS - UC Berkeley

▸ Research Interests

▸ Computer Architecture

▸ Machine Learning

▸ Architectural Acceleration of ML

▸ Computer architect by training. Worked on CPU designs at Intel,
Sun Micro, and startup.

INTRODUCTION

Bio: Personal Interests

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Sorting Fundamentals

▸ Midterm Grade Distribution

▸ Iterator and Iterable Interfaces

▸ Sorting

�4

Some slides adopted from Algorithms 4th Edition or COS226

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Sorting Fundamentals

▸ Iterator and Iterable Interfaces

▸ Sorting

�5

Some slides adopted from Algorithms 4th Edition or COS226

Maximum = 80

Iterable Interface

�6

▸ What is an Iterable?

▸ Class with a method that returns an Iterator

▸ What is an Iterator?

▸ Class with methods hasNext() and next()

▸ Why make data structures Iterable?

▸ To support elegant code

▸ Interface that allows an object to be the target of
a for-each loop:

// "foreach" statement (shorthand)
for(String s: stack){
 System.out.println(s);
}

 
myList.forEach(System.out::println);

ITERATORS

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

public interface Iterable<Item>
{

Iterable<Item> iterator();
}

public interface Iterator<Item>
{

boolean hasNext();
Item next();
void remove; // don't use

}

// equivalent code (longhand)
Iterator<String> i = stack.iterator();
while (i.hasNext()
{

String s = i.next();
StdOut.println(s);

}

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

Example: making ArrayList iterable

▸ Start with a class, implement iterable, within class you will implement iterator

public class ArrayList<Item> implements Iterable<Item> {
 // Have the class implement Iterable

public Iterator<Item> iterator() {
// Need this method iterator that returns an iterator
return new ArrayListIterator();  

 }

// Have this inner class which implements Iterator
private class ArrayListIterator implements Iterator<Item> {

private int i = 0;

public boolean hasNext() {
 return i < n;

}

public Item next() {
return a[i++];

}

public void remove() {
 throw new UnsupportedOperationException();

}
}

}

ITERATORS

Example: making Stack iterable (linked-list implementation)
public class Stack<Item> implements Iterable<Item> {
 // Have the class implement Iterable

public Iterator<Item> iterator() {
// Need this method iterator that returns an iterator
return new stackIterator();  

 }

// Have this inner class which implements Iterator
private class stackIterator implements Iterator<Item> {

//
private Node current = first;

public boolean hasNext() {
 return current != null;

}

public Item next() {
Item item = current.item;
current = current.next;
return item;

}

public void remove() {
 throw new UnsupportedOperationException();

}
}

}

ITERATORS

ITERATORS

Iterator Interface

�9

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Interface that allows us to traverse a collection one element
at a time.

public interface Iterator<E> {
 //returns true if the iteration has more elements
 //that is if next() would return an element instead of throwing an exception
 boolean hasNext();

 //returns the next element in the iteration
 //post: advances the iterator to the next value
 E next();

 //removes the last element that was returned by next
 //optional, better avoid it altogether
 // default void remove();
}

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

Traversing ArrayList

‣ Once you implement the Iterable interface, here are some valid ways to traverse ArrayList and print its
elements one by one.

 for(String elt:a1) {
System.out.println(elt);

}

a1.forEach(System.out::println);

a1.iterator().forEachRemaining(System.out::println);

▸

ITERATORS

▸ Iterable: https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Sorting Fundamentals

▸ Introduction

▸ Selection sort

▸ Insertion sort

�11

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION

Why study sorting?

▸ It’s more common than you think: e.g., sorting flights by
price, contacts by last name, files by size, emails by day
sent, neighborhoods by zipcode, etc.

▸ Good example of how to compare the performance of
different algorithms for the same problem.

▸ Some sorting algorithms relate to data structures.

▸ Sorting your data will often be a good starting point when
solving other problems (keep that in mind for interviews).

INTRODUCTION

Definitions

▸ Sorting: the process of arranging � items of a collection in non-
decreasing order (e.g., numerically or alphabetically).

▸ Rearrange array of N items into ascending order

▸ Key: assuming that an item consists of multiple components, the key is
the property based on which we sort items.

▸ Goal: sort any type of data according to the key

n

INTRODUCTION

Total order: It must be possible to put items in order

▸ Sorting is well defined if and only if there is total order.

▸ Total order: a binary relation � on a set � that satisfies the following
statements for all �, � , and � in � :

▸ Connexity: � or � .

▸ Transitivity: for all �, � , �, if � and � then � .

▸ Antisymmetry: if both � and � , then � .

▸ Ex: standard order for numbers, alphabetical order for strings,
chronological order for dates

≤ C
v w x C

v ≤ w w ≤ v

v w x v ≤ w w ≤ x v ≤ x

v ≤ w w ≤ v v = w

INTRODUCTION

How many different algorithms for sorting can there be?

▸ Adaptive
heapsort

▸ Bitonic sorter

▸ Block sort

▸ Bubble sort

▸ Bucket sort

▸ Cascade
mergesort

▸ Cocktail sort

▸ Comb sort

▸ Flashsort

▸ Gnome sort

▸ Heapsort

▸ Insertion sort

▸ Library sort

▸ Mergesort

▸ Odd-even sort

▸ Pancake sort

▸ Quicksort

▸ Radixsort

▸ Selection sort

▸ Shell sort

▸ Spaghetti sort

▸ Treesort

▸ …

INTRODUCTION

Rules of the game - Comparing

▸ We will be sorting arrays of � items, where each item contains a key. In Java,
objects are responsible in telling us how to naturally compare their keys.

▸ Let’s say we want to sort an array of objects of type T.

▸ Our class T should implement the Comparable interface (more on this in a
few lectures). We will need to implement the compareTo method to satisfy
a total order.

▸ Sort has no dependence on data type

n

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

INTRODUCTION

Rules of the game - Comparing

▸ public int compareTo(T that)

▸ Implement it so that v.compareTo(w):

▸ Returns >0 (positive) if v is greater than w.

▸ Returns <0 (negative) if v is smaller than w.

▸ Returns 0 if v is equal to w.

▸ Is a total order.

▸ Java classes such as Integer, Double, String, File all implement Comparable.

▸ Need to implement the Comparable interface for user-defined comparable types.

▸ compareTo allows us to use the same sorting algorithms on different data

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

TEXT

Implementing the Comparable interface

INTRODUCTION

Two primary sorting abstractions

▸ We will refer to data only through comparisons and exchanges.

▸ Less: Is v less than w?

 private static boolean less(Comparable v, Comparable w) {
 return v.compareTo(w) < 0;
 }

▸ Exchange: swap item in array a[] at index i with the one at index
j.  
private static void exch(Comparable[] a, int i, int j) {  
 Comparable swap = a[i]; 
 a[i]=a[j];  

 a[j]=swap;  
}

▸ Sort method will use these 2 methods

PRACTICE

Which total order property is violated?
▸ public class Temperature implements Comparable<Temperature> {

▸ private final double degrees;

▸

▸ // Constructor code

▸ public int compareTo(Temperature that) {

▸ double EPSILON = 0.1;

▸ if (this.degrees < that.degrees - EPSILON) return -1;

▸ if (this.degrees > that.degrees + EPSILON) return +1;

▸ return 0;

▸ }

▸ ...

▸ }

▸ Connexity: � or � .

▸ Transitivity: for all �, � , �, if
� and � then � .

▸ Antisymmetry: if both �
and � , then � .

v ≤ w w ≤ v

v w x
v ≤ w w ≤ x v ≤ x

v ≤ w
w ≤ v v = w

INTRODUCTION

Rules of the game - Cost model

▸ Sorting cost model: we count compares and exchanges. If
a sorting algorithm does not use exchanges, we count
array accesses.

▸ Compares, exchanges, array accesses give us an estimate
on the time complexity

▸ There are other types of sorting algorithms where they are
not based on comparisons (e.g., radixsort). We will not see
these in CS62 but stay tuned for CS140.

INTRODUCTION

Rules of the game - Memory usage

▸ Extra memory: often as important as running time. Sorting
algorithms are divided into two categories:

▸ In place: use constant or logarithmic extra memory,
beyond the memory needed to store the items to be
sorted.

▸ Not in place: use linear auxiliary memory.

INTRODUCTION

Rules of the game - Stability

▸ Stable: sort repeated elements in the same order that they
appear in the input.

https://en.wikipedia.org/wiki/Sorting_algorithm#/media/File:Sorting_stability_playing_cards.svg

https://en.wikipedia.org/wiki/Sorting_algorithm#/media/File:Sorting_stability_playing_cards.svg

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Sorting Fundamentals

▸ Introduction

▸ Selection sort

▸ Insertion sort

�24

SELECTION SORT

Selection sort

▸ Divide the array in two parts: a sorted subarray on the left and an
unsorted on the right.

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

SELECTION SORT

Selection sort

Min

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 44 38 5 47 3 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 44 38 5 47 3 36 26

1 44 38 5 47 3 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

Min

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 38 5 47 44 36 26

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 38 47 44 36 26

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 47 44 36 38

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 44 47 38

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 44 47 38

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 44 47 38

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 47 44

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 47 44

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 38 47 44

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

SELECTION SORT

Selection sort

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort

▸ Repeat:

▸ Find the smallest element in the unsorted subarray.

▸ Exchange it with the leftmost unsorted element.

▸ Move subarray boundaries one element to the right.

1 3 5 26 36 38 44 47

SELECTION SORT

Selection sort
public static void sort(Comparable[] a) {

}

SELECTION SORT

Selection sort

public static void selection_sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (less(a[j], a[min]))
 min = j;
 }
 exch(a, i, min);
 }
 }
▸ Invariants: At the end of each iteration i:

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]

▸ no entry in a[i+1…n-1] is smaller than any entry in a[0…i]

� In iteration i←

� Find the index min of the
smallest remaining array
←

� swap a[i] and a[min]←

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void selection_sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (less(a[j], a[min]))
 min = j;
 }
 exch(a, i, min);
 }
 }
▸ Comparisons:

▸ Exchanges:

▸ In-place?

▸ Stable?

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void selection_sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (less(a[j], a[min]))
 min = j;
 }
 exch(a, i, min);
 }
 }

▸ Comparisons: � ~� , that is � .

▸ Exchanges:

▸ In-place?

▸ Stable?

1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void selection_sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (less(a[j], a[min]))
 min = j;
 }
 exch(a, i, min);
 }
 }
▸ Comparisons: � ~� , that is � .

▸ Exchanges: � or � , making it useful when exchanges are expensive.

▸ Running time is quadratic, even if input is sorted. (Does NOT depend on the input)

▸ In-place?

▸ Not stable?

1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

n O(n)

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void selection_sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (less(a[j], a[min]))
 min = j;
 }
 exch(a, i, min);
 }
 }
▸ Comparisons: � ~� , that is � .

▸ Exchanges: � or � , making it useful when exchanges are expensive.

▸ Running time is quadratic, even if input is sorted. (Does NOT depend on the input)

▸ In-place, requires almost no additional memory.

▸ Not stable, think of the array [5_a, 3, 5_b, 1] which will end up as [1, 3, 5_b, 5_a].

1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

n O(n)

SELECTION SORT

Practice Time

‣ Using selection sort, sort the array with elements
[12,10,16,11,9,7].

‣ Visualize your work for every iteration of the algorithm.

SELECTION SORT

Answer

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Sorting Fundamentals

▸ Introduction

▸ Selection sort

▸ Insertion sort

�58

INSERTION SORT

Insertion sort

▸ Keep a partially sorted subarray on the left and an unsorted subarray on
the right

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray and insert it
there. (exchange with larger entry to the left)

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 44 38 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 44 38 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 44 5 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 38 44 5 47 1 36 26

3 38 44 5 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 38 5 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

3 5 38 44 47 1 36 26

INSERTION SORT

Insertion sort

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 47 1 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 44 1 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 38 1 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 5 1 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

3 1 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 47 36 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 44 36 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 38 36 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 47 26

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 44 26 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 38 26 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 36 26 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

▸ Repeat:

▸ Examine the next element in the unsorted subarray.

▸ Find the location it belongs within the sorted subarray
and insert it there.

▸ Move subarray boundaries one element to the right.

INSERTION SORT

Insertion sort

1 3 5 26 36 38 44 47

INSERTION SORT

In case you didn’t get this…

‣ https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

INSERTION SORT

Insertion sort
public static void sort(Comparable[] a) {

 }

INSERTION SORT

Insertion sort

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }
 }
▸ Invariants: At the end of each iteration i:

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]

� In iteration i←

� Move from right to left,
exchange a[i] with entry to
the left, if it's larger

←

INSERTION SORT

Insertion sort: mathematical analysis for worst-case

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }
 }

▸ Comparisons: � ~� , that is � .

▸ Exchanges: ?

▸ In-place?

▸ Stable?

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

INSERTION SORT

Insertion sort: mathematical analysis for worst-case

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }
 }

▸ Comparisons: � ~� , that is � .

▸ Exchanges: � ~� , that is � .

▸ Worst-case running time is quadratic. Worst case = array sorted in reverse order.

▸ Every element moves all the way to the left.

▸ In-place, requires almost no additional memory.

▸ Stable

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

0 + 1 + 2 + … + (n − 2) + (n − 1) n2 /2 O(n2)

INSERTION SORT

Insertion sort: average and best case

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }

 }

▸ Average case: quadratic for both comparisons and exchanges ~� when sorting a randomly
ordered array. (2X faster than selection sort on average)

▸ Expect each entry to move halfway back: 0 + 0.5 + 1 +...(n-1)/2 ~ (n/2)*(n/2) ~ n^2/4

▸ Best case: � comparisons (validate) and � exchanges for an already sorted array.

n2/4

n − 1 0

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

INSERTION SORT

Practice Time (cards)

‣ Using insertion sort, sort the array with elements
[12,10,16,11,9,7].

‣ Visualize your work for every iteration of the algorithm.

INSERTION SORT

Answer

 https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort
https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

TEXT

Insertion Sort

▸ For partially-sorted arrays, insertion sort runs in linear time

▸ Number of exchanges equals number of inversions

▸ Inversion = pair of keys that are out of order

▸ Ex1: Appending a subarray of size 10 to a sorted subarray of size N

▸ Ex2: An array of size N with only 10 entries out of place

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Sorting Fundamentals and Comparators

▸ Introduction

▸ Selection sort

▸ Insertion sort

▸ Comparators

�124

COMPARATORS

Comparable

▸ Interface with a single method that we need to implement:
public int compareTo(T that)

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

▸ Corresponds to natural ordering.

�125

How to make your class T comparable?

1. Implement Comparable<T> interface.

2. Implement compareTo(T that) method to compare
this T object to that based on natural ordering.

COMPARATORS �126

INTERFACE COMPARATOR

Comparator

▸ Sometimes the natural ordering is not the type of ordering we want.

▸ Comparator is an interface which allows us to dictate what kind of
ordering we want by implementing the method:  
public int compare(T this, T that)

▸ Implement it so that compare(v, w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

�127

How to define an alternative ordering for your class T?

1. Make a new class that implements Comparator<T> interface.

2. Implement compare(T t1, T t2) method to compare t1
object to t2 based on an alternative ordering.

3. Alternatively, implement an anonymous inner class:
public static Comparator<T> nameOfComparator = new Comparator<T>()
{

@Override // indicates method overriding the superclass' method
public int compare(T t1, T t2) {

 {
 //return something;

 }
};

COMPARATORS �128

COMPARATORS

The Java Collections Framework

�129

 https://en.wikipedia.org/wiki/Java_collections_framework

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework

COMPARATORS

Sorting Collections

‣ Collections class contains:

‣ public static <T extends Comparable<? super T>> void sort(List<T>
list)

‣ Generic methods introduce their own type parameters.

‣ Use extends with generics, even if the type parameter implements an interface.

‣ The class T itself or one of its ancestors implements Comparable.

‣ Collections.sort(list)

‣ Implemented as optimized mergesort, that is timsort.

‣ If list’s elements do not implement Comparable, throw ClassCastException.

�130

COMPARATORS

Alternative sorting of Collections

‣ Collections class contains:

‣ static <T> void sort(List<T> list, Comparator<? super T>
c)

‣ Collections.sort(list, someComparator);

‣ Collections.sort(list, new
ExternalComparatorClass()); or:

‣ Collections.sort(list, T.InnerAnonymousClass);

‣ If list’s elements do not implement Comparable or cannot be
compared with Comparator, throw ClassCastException.

�131

COMPARATORS

Example: Natural and alternative sorting for Employees

https://github.com/pomonacs622021fa/LectureCode/blob/main/
Lecture11/Employee.java

https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

�132

https://github.com/pomonacs622021fa/LectureCode/blob/main/Lecture11/Employee.java
https://github.com/pomonacs622021fa/LectureCode/blob/main/Lecture11/Employee.java
https://stackoverflow.com/questions/2266827/when-to-use-comparable-and-comparator

TODAY’S LECTURE IN A NUTSHELL

Lecture 11: Sorting Fundamentals and Comparators

▸ Introduction

▸ Selection sort

▸ Insertion sort

▸ Comparators

�133

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.1 (pages 244–262), Chapter 2.1 (Page 247), Chapter 2.5 (Pages 338-339)

▸ Website:

▸ Elementary sorts: https://algs4.cs.princeton.edu/21elementary/

▸ Code: https://algs4.cs.princeton.edu/21elementary/Selection.java.html and  
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

▸ Oracle documentation:

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

▸ Comparable: https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

▸ Comparator: https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

�134

Practice Problems:

▸ 2.1.1-2.1.8

https://algs4.cs.princeton.edu/21elementary/
https://algs4.cs.princeton.edu/21elementary/Selection.java.html
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html
https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Comparator.html

