
PRACTICE PROBLEMS FOR MIDTERM 2

Practice Problems

▸ Problem 1 - Sorting

▸ Problem 2 - Heaps

▸ Problem 3 - Tree traversals

▸ Problem 4 - Binary Trees

▸ Problem 5 - Binary Search Trees

▸ Problem 6 - Iterators

PRACTICE PROBLEMS FOR MIDTERM 2

Problem 1 - Sorting

▸ In the next slide, you can find a table whose first row (last column 0) contains an array
of 18 unsorted numbers between 1 and 50. The last row (last column 6) contains the
numbers in sorted order. The other rows show the array in some intermediate state
during one of these five sorting algorithms:

▸ 1-Selection sort

▸ 2-Insertion sort

▸ 3-Mergesort

▸ 4-Quicksort (no initial shuffling, one partition only)

▸ 5-Heapsort

▸ Match each algorithm with the right row by writing its number (1-5) in the last column.

PRACTICE PROBLEMS FOR MIDTERM 2

12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15
10 11 12 46 20 43 42 47 44 32 16 35 40 18 41 21 28 15
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6

Problem 1 - Sorting

PRACTICE PROBLEMS FOR MIDTERM 2

Problem 2 - Heaps

▸ Consider the following max-heap:

▸ Draw the heap after you insert key 13.

▸ Suppose you delete the maximum key from the original
heap. Draw the heap after you delete 14.

PRACTICE PROBLEMS FOR MIDTERM 2

Problem 3 - Tree Traversals

▸ Circle the correct binary tree(s) that would produce both of
the following traversals:

▸ Pre-order: C R B W O S T N Q

▸ In-order: B R W O C S N T Q

PRACTICE PROBLEMS FOR MIDTERM 2

Problem 4 - Binary Trees

▸ You are extending the functionality of the BinaryTree class that represents binary
trees with the goal of counting the number of leaves. Remember that BinaryTree
has a pointer to a root Node and the inner class Node has two pointers, left and
left to the root nodes that correspond to its left and right subtrees.

▸ You are given the following public method:

 public int sumLeafTree()

 return sumLeafTree(root);

 }

‣ Please fill in the body of the following recursive method

private int sumLeafTree(Node x){…}

PRACTICE PROBLEMS FOR MIDTERM 2

Problem 5 - Binary Search Trees

▸ You are extending the functionality of the BST class that represents binary search trees with the
goal of counting the number of nodes whose keys fall within a given [low, high] range.
That is you want to count how many nodes have keys that are equal or larger than low and
equal or smaller than high. Remember that BST has a pointer to a root Node and the inner
class Node has two pointers, left and left to the root nodes that correspond to its left and
right subtrees and a Comparable Key key (please ignore the value).

▸ You are given the following public method:

 public int countRange(Key low, Key high)

 return countRange(root, Key low, Key high);

 }

‣ Please fill in the body of the following recursive method

private int countRange(Node x, Key low, Key high){…}

PRACTICE PROBLEMS FOR MIDTERM 2

Problem 6 - Iterators

▸ A programmer discovers that they frequently need only the odd numbers in an arraylist of
integers. As a result, they decided to write a class OddIterator that implements the
Iterator interface. Please help them implement the constructor and the hasNext() and
next() methods so that they can retrieve the odd values, one at a time. For example, if the
arraylist contains the elements [7, 4, 1, 3, 0], the iterator should return the values 7, 1, and 3.
You are given the following public class:

public class OddIterator implements Iterator<Integer> {

// The array whose odd values are to be enumerated  
private ArrayList<Integer> myArrayList;

//any other instance variables you might need

//An iterator over the odd values of myArrayList
public OddIterator(ArrayList<Integer> myArrayList){…}

//runs in O(n) time
public boolean hasNext(){…}
 
//runs in O(1) time  
public Integer next(){…}
}

PRACTICE PROBLEMS FOR MIDTERM 2

Answers

▸ Solution to Problem 1 - Sorting

▸ Solution to Problem 2 - Heaps

▸ Solution to Problem 3 - Tree traversals

▸ Solution to Problem 4 - Binary Trees

▸ Solution to Problem 5 - Binary Search Trees

▸ Solution to Problem 6 - Iterators

PRACTICE PROBLEMS FOR MIDTERM 2

Solution to Problem 1 - Sorting

12 11 35 46 20 43 42 47 44 32 16 10 40 18 41 21 28 15 0
11 12 20 35 42 43 46 47 44 32 16 10 40 18 41 21 28 15 2
10 11 12 46 20 43 42 47 44 32 16 35 40 18 41 21 28 15 4
10 11 12 15 16 43 42 47 44 32 20 35 40 18 41 21 28 46 1
43 32 42 28 20 40 41 21 15 11 16 10 35 18 12 44 46 47 5
11 12 20 35 46 43 42 47 44 32 16 10 40 18 41 21 28 15 3
10 11 12 15 16 18 20 21 28 32 35 40 41 42 43 44 46 47 6

PRACTICE PROBLEMS FOR MIDTERM 2

Solution to Problem 2 - Heaps

▸ Insert key 13:

▸ Delete max-key (14):

PRACTICE PROBLEMS FOR MIDTERM 2

Solution to Problem 3 - Tree traversals

▸ Pre-order: C R B W O S T N Q

▸ In-order: B R W O C S N T Q

PRACTICE PROBLEMS FOR MIDTERM 2

Solution to Problem 4 - Binary Trees

private int sumLeafTree(Node x){

if (x == null){

return 0;

}

else if (x.left == null && x.right == null){

 return 1;  
}

else{

return sumLeafTree(x.left) + sumLeafTree(x.right);

}

}

PRACTICE PROBLEMS FOR MIDTERM 2

Solution to Problem 5 - Binary Search Trees

private int countRange(Node x, Key low, Key high){

if (x == null){

return 0;

}

if (x.key.compareTo(low)>=0 && x.key.compareTo(high)<=0){

return 1 + countRange(x.left, low, high) + countRange(x.right, low, high);

}

else if (x.key.compareTo(low)<0){

return countRange(x.right, low, high);

}

else{

return countRange(x.left, low, high);

}

}

PRACTICE PROBLEMS FOR MIDTERM 2

Solution to Problem 6 - Iterators

public class OddIterator implements Iterator<Integer> {
 
 private ArrayList<Integer> myArrayList;

 int counter;

 public OddIterator(ArrayList<Integer> myArrayList){
 this.myArrayList = myArrayList;

counter = 0;
 }

 //runs in O(n) time
 public boolean hasNext(){

for (int i=counter; i<myArrayList.size(); i++){
if(myArrayList.get(i)%2 == 1){

 counter = i;
return true;

}
}

 return false;
 }  

 
 //runs in O(1) time  
 public Integer next(){
 return myArrayList.get(counter++); 
 }

}

67

GOOD LUCK! YOU CAN DO THIS!

