
CS 062 Midterm 3/5/2012

1.Suppose you are given a singly-linked list class that holds strings and that
maintains pointers to both the head and the tail of the list. Its)elds and
constructors are as follows:

public class SinglyLinkedList {
protected ListNode head;
protected ListNode tail;

public SinglyLinkedList() {
this.head = null;
this.tail = null;

}

...
}

The ListNode class looks like this:

public class ListNode {
private String value;
private ListNode next;

public ListNode(String value, ListNode next) {
this.value = value;
this.next = next;

}

public String getValue() {
return this.value;

}

public ListNode getNext() {
return this.next;

}

public String setValue(String newValue) {
this.value = newValue;

}

public ListNode setNext(ListNode newNext) {
this.next = newNext;

}
}

CS 062 Midterm 3/5/2012

Please add a new method to the class SinglyLinkedList with header:
public void keep(int howMany) {

which should modify the list so it only keeps the)rst howMany elements,
dropping the rest of the elements from the list. E.g., if myList originally contains
10 elements, then executing myList.keep(6) should result in myList having
only the)rst 6 elements of the list. You don't need to worry about keeping track of
the discarded nodes as long as you cut them o2 from the rest of the list.

a.Write the pre- and post- conditions for the keep method. Just describe them
in English.

Pre: howMany > 0
 (adding howMany < size or howMany <= size is okay too)
Post: list has <= howMany elements
 (<= if we accept howMany > size and do nothing)

b. List at least one special case that either violates your preconditions or requires
special handling.

HowMany = 0
howMany == size
howMany < 0

c.Write the code for keep on the next page (you don't need to worry about
comments). Remember that you should check your preconditions (you can use
"RuntimeError" if you need to throw any exceptions).

CS 062 Midterm 3/5/2012

public void keep(int howMany) {

if (howMany < 0) {

throw new RuntimeError(“Can’t keep a negative number

of elements.”);

} else if (howMany == 0) {

this.head = null;

this.tail = null;

}

this.tail = this.head; // set tail to head → reduce list to size 1

while (howMany > 1 && this.tail != null) {

this.tail = this.tail.next; // set tail to next element, adding

1 to kept size

howMany -= 1; // decrement counter

}

// now we just need to chop o3 the rest of the list:

this.tail.next = null;

// that’s it. We don’t have a size variable to modify or

anything like that

}

CS 062 Midterm 3/5/2012

2. You have a singly linked list with only a head pointer (see the
8gure below). The insert() method for the list inserts new
values into the list so that the elements remain in sorted order
using the obvious algorithm. In other words, after each

insertion, the
list is in
sorted order.

a. Assume you
are given a
sequence of n
values to
insert one at
a time into

the list. What do you expect the total worst-case running time
to be, using big-O notation, for inserting all of the values into
the list? Give a brief (one to two sentence) justi&cation for
your answer.

To insert a sequence of n values will take O(n̂2) time. The reason for this is that on
average, inserting the nth element will take n/2 time (scanning through the list to
And the right place which on average is the center of previously inserted elements).
So the runtime is the sum from i = 0 to n of i, times a constant (B) which is O(n̂2).

b. Suppose that the sequence of n values to be inserted just
happen to be in reverse sorted order. E.g., you might be
given the elements 47, 23, 19, 13, 7, 6, and 8nally 2. What
do you expect the running time to be, using big-O notation,
for inserting all of n values into the list? Give a brief (one to
two sentence) justi&cation for your answer.

Now the run-time for inserting n elements will be O(n), because each insert will be
O(1). This is because each insertion will be smaller than the Arst element of the list,
and so it’ll live there without the need to do more than 1 comparison.

Note that for this problem and the one above, the question is asking about the time
to insert all n values, not the time to insert a single value.

CS 062 Midterm 3/5/2012

5. Short answer

a.Describe carefully in words what happens when you insert an element into an
ArrayList when it is already)lled to capacity.

A new array (not a new ArrayList) is allocated with double the old capacity and all
of the old elements are copied over to this new array in an O(n) operation.

b. We noted that when using Java graphics, we must call the
method repaint (which the programmer doesn’t write) in order to
get the computer to eventually call the method paint, which is the
one the programmer actually writes. Please explain why this
happens and what data structure that we have discussed in class is
used to make this all work.

This happens because paint() is a callback: Java is in charge of
deciding when to call it. Repaint() is just a way to tell Java:
“Hey you know that paint method? Could you please call it?” As
for the data structure, the mechanism for this interaction is
the event queue that we discussed in class. Repaint puts an
event on that queue, and whenever that event is processed, it
will trigger a paint call.

c. Explain how the run-time stack changes when a method is
invoked and when the method completes execution.

When a method is invoked, an activation record is pushed onto
the stack. When a method returns, that record is popped from
the stack (this question is just looking for the basics).

