
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

6: Exceptions & I/O

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

FUNDAMENTALS

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Exceptions & I/O

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Binary I/O

�2

Some slides adopted from Introduction to Java and Oracle tutorials

EXCEPTIONS

Exceptions are exceptional or unwanted events

▸ That is operations that disrupt the normal flow of the program.

▸ E.g., divide a number by zero, run out of memory, ask for a file that
does not exist, etc.

▸ When an error occurs within a method, the method throws an exception
object that contains its name, type, and state of program.

▸ The runtime system looks for something to handle the exception among
the call stack, the list of methods called (in reverse order) by main to
reach the error.

▸ The exception handler catches the exception. If no appropriate handler,
the program terminates.

�3

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html

EXCEPTIONS

java.lang.Throwable

�4

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

Throwable

Exception Error

OutOfMemory
Error

Other Error
subclasses

Other
Exception
subclasses

IOExceptionRuntimeException

NullPointer
Exception

Arithmetic
Exception

IndexOutOfBounds
Exception

Other
RuntimeException

subclasses

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

EXCEPTIONS

Three major types of exception classes

▸ Error: rare internal system errors that an application cannot recover from.

▸ Typically not caught and program has to terminate.

▸ e.g., java.lang.OutOfMemoryError or java.lang.StackOverflowError

▸ Exception: errors caused by program and external circumstances.

▸ Can be caught and handled.

▸ e.g., java.io.Exception

▸ RuntimeException: programming errors that can occur in any Java method.

▸ Method not required to declare that it throws any of the exception.

▸ e.g., java.lang.IndexOutOfBoundsException, java.lang.NullPointerException,
java.lang.ArithmeticException

▸ Unchecked exceptions: Error and RuntimeException and subclasses.

▸ Checked exceptions: All other exceptions - programmer has to check and deal with them.

�5

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

https://docs.oracle.com/javase/7/docs/api/java/lang/Throwable.html

EXCEPTIONS

Handling exceptions

▸ Three operations:

▸ Declaring an exception

▸ Throwing an exception

▸ Catching an exception

method1(){
 try {
 method2();
 } catch (Exception e) {
 System.err.println(e.getMessage());
 }
}
method2() throws Exception{
 if(some error) {
 throw new Exception();
 }
}

�6

https://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

CATCH EXCEPTION

DECLARE EXCEPTION
THROW EXCEPTION

https://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

EXCEPTIONS

Declaring exceptions

▸ Every method must state the types of checked exceptions it might
throw in the method header so that the caller of the method is
informed of the exception.

▸ System errors and runtime exceptions can happen to any code,
therefore Java does not require explicit declaration of
unchecked exceptions.

▸ public void exceptionalMethod() throws IOException{

▸ throws: the method might throw an exception. Can also throw
multiple exceptions, separated by comma.

�7

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

EXCEPTIONS

Throwing exceptions

▸ If an error is detected, then the program can throw an
exception.

▸ e.g., you have asked for age and the user gave you a
string. You can throw an IllegalArgumentException.

▸ throw new IllegalArgumentException(“Wrong argument”);

▸ The argument in the constructor is called the exception
message. You can access it by invoking getMessage().

▸ throws FOR DECLARING AN EXCEPTION, throw TO THROW AN EXCEPTION

�8

https://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/throwing.html

EXCEPTIONS

Catching exceptions

▸ An exception can be caught and handled in a try-catch block.

method(){
 try {
 statements; //statements that could thrown exception
 } catch (Exception1 e1) {
 //handle e1;
 }
 catch (Exception2 e2) {
 //handle e2;
 }
}
▸ If no exception is thrown, then the catch blocks are skipped.

▸ If an exception is thrown, the execution of the try block ends at the responsible statement.

▸ The order of catch blocks is important. A compile error will result if a catch block for a superclass type appears before
a catch block for a subclass. E.g., catch(Exception ex) followed by catch(RuntimeException ex) won’t compile.

▸ If a method declares a checked exception (e.g., void p1() throws IOException) and you invoke it, you have to
enclose it in a try catch block or declare to throw the exception in the calling method (e.g., try{ p1();} catch
(IOException e){…}.

�9

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

EXCEPTIONS
main method{  
 …  
 try{  
 …  
 method1();  
 statement1;  
 }  
 catch (Exception1 ex1){  
 //process ex1  
 }  
 statement2;  
}

�10

Ex
am

pl
e

fro
m

 In
tro

du
ct

io
n

to
 J

av
a

Pr
og

ra
m

m
in

g
by

 L
ia

ng

method1{  
 …  
 try{  
 …  
 method2();  
 statement3;  
 }  
 catch (Exception2 ex2){  
 //process ex2  
 }  
 statement4;  
}

method2{  
 …  
 try{  
 …  
 method3();  
 statement5;  
 }  
 catch (Exception3 ex3){  
 //process ex3  
 }  
 statement6;  
}

Assume method3 throws an exception. Possible outcomes:

‣ Exception is of type Exception3. Caught in method2. statement5 is skipped. statement6 is
executed.

‣ Exception is of type Exception2. Caught in method1. statement3 is skipped. statement4 is
executed.

‣ Exception is of type Exception1. Caught in main. statement1 is skipped. statement2 is
executed.

‣ Exception is not caught in method2, method1, and main, the program terminates. statement1 and
statement2 are not executed.

https://docs.oracle.com/javase/specs/jls/se7/html/jls-8.html#jls-8.4.6

EXCEPTIONS

finally block

‣ Used when you want to execute some code regardless of whether
an exception occurs or is caught

method(){
 try {
 statements; //statements that could thrown exception
 } catch (Exception1 e) {
 //handle e; catch is optional.
 }
 finally{
 //statements that are executed no matter what;
 }
}
‣ The finally block will execute no matter what. Even after a return.

�11

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

EXCEPTIONS

/**
 * Illustrates try,catch, finally blocks
 * @author https://docs.oracle.com/javase/tutorial/essential/exceptions/putItTogether.html
 *
 */
import java.io.*;
import java.util.List;
import java.util.ArrayList;

public class ListOfNumbers {
// Note: This class will not compile yet.

private List<Integer> list;
private static final int SIZE = 10;

public ListOfNumbers() {
list = new ArrayList<Integer>(SIZE);
for (int i = 0; i < SIZE; i++) {

list.add(new Integer(i));
}

}

public void writeList() {
PrintWriter out = null;

try {
System.out.println("Entering" + " try statement");

out = new PrintWriter(new FileWriter("OutFile.txt"));
for (int i = 0; i < SIZE; i++) {

out.println("Value at: " + i + " = " + list.get(i));
}

} catch (IndexOutOfBoundsException e) {
System.err.println("Caught IndexOutOfBoundsException: " + e.getMessage());

} catch (IOException e) {
System.err.println("Caught IOException: " + e.getMessage());

} finally {
if (out != null) {

System.out.println("Closing PrintWriter");
out.close();

} else {
System.out.println("PrintWriter not open");

}
}

}

}

�12

https://docs.oracle.com/javase/tutorial/essential/exceptions/catch.html

EXCEPTIONS

Practice Time

‣ 1. Is there anything wrong with this exception handler?

try {

} catch (Exception e) {

} catch (ArithmeticException a) {

}

�13

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html

EXCEPTIONS

Answers

‣ 1. The ordering matters! The second handler can never be
reached and the code won’t compile.

�14

https://docs.oracle.com/javase/tutorial/essential/exceptions/QandE/answers.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/QandE/answers.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Exceptions & I/O

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Binary I/O

�15

ASSERTIONS

Pre and post conditions

‣ Pre-condition: Specification of what must be true for
method to work properly.

‣ Post-condition: Specification of what must be true at end
of method if precondition held before execution.

�16

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

ASSERTIONS

Assertions test correctness of assumptions about our program

‣ An assertion must be a statement that is either true or false and should be true if
there are no mistakes in the program.

‣ Two forms:

assert booleanExpression ;
assert booleanExpression : message ;  

‣ If they evaluate to true, nothing happens.

‣ If they fail, they throw an AssertionError.

‣ E.g., assert age >= 21 : " Underage”;

‣ If failed:
‣ Exception in thread "main" java.lang.AssertionError: Underage

�17

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

ASSERTIONS

Enabling assertions

‣ By default off.

‣ java -ea
‣ Or adding ea as virtual machine argument in arguments

tab in Eclipse when set up runtime configuration.  

‣ Little cost as they can be turned on/off.

‣ That means that they should NOT be used to check
arguments in public methods.

‣ USE EXCEPTIONS INSTEAD!

�18

https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Exceptions & I/O

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Binary I/O

�19

TEXT I/O

I/O streams

‣ Input stream: a sequence of data into the program.

‣ Output stream: a sequence of data out of the program.

‣ Stream sources and destinations include disk files, keyboard,
peripherals, memory arrays, other programs, etc.

‣ Data stored in variables, objects and data structures are temporary
and lost when the program terminates. Streams allow us to save
them in files, e.g., on disk or CD (!)

‣ Streams can support different kinds of data: bytes, principles,
characters, objects, etc.

�20

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/tutorial/essential/io/streams.html

TEXT I/O

Text and Binary files

‣ Text files: Contain sequences of characters and can be
viewed in a text editor or read by a program.

‣ Typically set to ASCII encoding.

‣ Common extension: .txt

‣ Binary files: Contents are handled as sequences of binary
digits by programs.

‣ Common extension: .dat

�21

https://docs.oracle.com/javase/tutorial/essential/io/charstreams.html

https://docs.oracle.com/javase/tutorial/essential/exceptions/declaring.html
https://docs.oracle.com/javase/tutorial/essential/io/charstreams.html

TEXT I/O

Files

‣ Every file is placed in a directory in the file system.

‣ Absolute file name: the file name with its complete path and drive
letter.

‣ e.g., on Windows: C:\apapoutsaki\somefile.txt

‣ On Mac/Unix: /home/apapoutsaki.somefile.txt

‣ File: contains methods for obtaining file properties, renaming, and
deleting files. Not for reading/writing!

‣ CAUTION: DIRECTORY SEPARATOR IN WINDOWS IS \, WHICH IS SPECIAL CHARACTER IN JAVA. SHOULD BE
“\\” INSTEAD.

TEXT I/O

/**
 * Demonstrates File class and its operations.
 * @author https://liveexample.pearsoncmg.com/html/TestFileClass.html
 *
 */

import java.io.File;
import java.util.Date;

public class TestFile {
 public static void main(String[] args) {
 File file = new File("some.text");
 System.out.println("Does it exist? " + file.exists());
 System.out.println("The file has " + file.length() + " bytes");
 System.out.println("Can it be read? " + file.canRead());
 System.out.println("Can it be written? " + file.canWrite());
 System.out.println("Is it a directory? " + file.isDirectory());
 System.out.println("Is it a file? " + file.isFile());
 System.out.println("Is it absolute? " + file.isAbsolute());
 System.out.println("Is it hidden? " + file.isHidden());
 System.out.println("Absolute path is " + file.getAbsolutePath());
 System.out.println("Last modified on " + new Date(file.lastModified()));
 }
}

TEXT I/O

Writing data to a text file

▸ PrintWriter output = new PrintWriter(new
File(“filename”));

▸ New file will be created. If already exists, discard.

▸ Invoking the constructor may throw an I/O Exception…

▸ output.print and output.println work with Strings,
and primitives.

▸ Always close a stream!

TEXT I/O

/**
 * Demonstrates how to write to text file.
 * @author https://liveexample.pearsoncmg.com/html/WriteData.html
 *
 */

import java.io.File;
import java.io.IOException;
import java.io.PrintWriter;

public class WriteData {
public static void main(String[] args) {

PrintWriter output = null;
try {

output = new PrintWriter(new File("addresses.txt"));
// Write formatted output to the file
output.print("Alexandra Papoutsaki ");
output.println(222);
output.print("Mark Kampe ");
output.println(212);

} catch (IOException e) {
System.err.println(e.getMessage());

} finally {
if (output != null)

output.close();
}

}
}

TEXT I/O

Reading data from a text file

▸ java.util.Scanner reads Strings and primitives.

▸ Breaks input into tokens, demoted by whitespaces.

▸ To read from keyboard: Scanner input = new Scanner(System.in);

▸ To read from file: Scanner input = new Scanner(new
File(“filename”));

▸ Need to close stream as before.

▸ hasNext() tells us if there are more tokens in the stream. next() returns
one token at a time.

▸ Variations of next are nextLine(), nextByte(), nextShort(), etc.

TEXT I/O
/**
 * Demonstrates how to read data from a text file.
 * @author https://liveexample.pearsoncmg.com/html/ReadData.html
 *
 */

import java.io.File;
import java.io.IOException;
import java.util.Scanner;

public class ReadData {
public static void main(String[] args) {

Scanner input = null;
// Create a Scanner for the file
try {

input = new Scanner(new File("addresses.txt"));

// Read data from a file
while (input.hasNext()) {

String firstName = input.next();
String lastName = input.next();
int room = input.nextInt();
System.out.println(firstName + " " + lastName + " " + room);

}
} catch (IOException e) {

System.err.println(e.getMessage());
} finally {

if (input != null)
input.close();

}

}
}

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Exceptions & I/O

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Binary I/O

�28

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ Exceptions: https://docs.oracle.com/javase/tutorial/essential/exceptions/

▸ Assertions: https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html

▸ I/O: https://docs.oracle.com/javase/tutorial/essential/io

▸ Textbook:

▸ Chapter 1.2 (Page 107)

�29

https://docs.oracle.com/javase/tutorial/essential/exceptions/
https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html
https://docs.oracle.com/javase/tutorial/essential/io

TODAY’S LECTURE IN A NUTSHELL

Lecture 6: Exceptions & I/O

▸ Exceptions

▸ Assertions

▸ Text I/O

▸ Binary I/O

�30

BINARY I/O �31

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

Object

InputStream OutputStream

FileOutput
Stream

FilterOutput
Stream

ObjectInput
Stream

FilterInput
StreamFileInputStream

BufferedInput
Stream

DataInput
Stream

ObjectOutpu
tStream

BufferedOutputS
tream

DataOutput
Stream

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

BINARY I/O

Reading/Writing bytes from/to binary files.

▸ FileInputStream/FileOutputStream reads/writes bytes
from/to files.

▸ int read(): reads next byte of data. Returns value between 0
to 255.

▸ void write(int b): write next byte of data

▸ close(): closes stream

BINARY I/O

/**
 * Demonstrates input/output streams for binary files.
 * @author https://liveexample.pearsoncmg.com/html/TestFileStream.html
 *
 */

import java.io.FileOutputStream;
import java.io.FileInputStream;
import java.io.IOException;

public class TestFileStream {
 public static void main(String[] args) throws IOException {
 try (
 // Create an output stream to the file
 FileOutputStream output = new FileOutputStream("temp.dat");
) {
 // Output values to the file
 for (int i = 1; i <= 10; i++)
 output.write(i);
 output.close();
 }

 try (
 // Create an input stream for the file
 FileInputStream input = new FileInputStream("temp.dat");
) {
 // Read values from the file
 int value;
 while ((value = input.read()) != -1)
 System.out.print(value + " ");
 input.close();
 }
 }
}

BINARY I/O

Converting bytes to primitives or strings

▸ DataInputStream/DataOutputStream reads/writes bytes
from/to files and converts them to appropriate type.

▸ Wrappers to existing input/output streams.

▸ boolean/int/char/etc readBoolean/Int/Char/etc():
reads a boolean/int/char/etc from an input stream.

▸ Void writeBoolean/Int/Char/etc(boolean/int/char/
etc): write a boolean/int/char/etc to an output stream.

BINARY I/O

/**
 * Demonstrates input/output streams for binary files.
 * @author https://liveexample.pearsoncmg.com/html/TestFileStream.html
 *
 */

import java.io.FileOutputStream;
import java.io.FileInputStream;
import java.io.IOException;

public class TestFileStream {
 public static void main(String[] args) throws IOException {
 try (
 // Create an output stream to the file
 FileOutputStream output = new FileOutputStream("temp.dat");
) {
 // Output values to the file
 for (int i = 1; i <= 10; i++)
 output.write(i);
 output.close();
 }

 try (
 // Create an input stream for the file
 FileInputStream input = new FileInputStream("temp.dat");
) {
 // Read values from the file
 int value;
 while ((value = input.read()) != -1)
 System.out.print(value + " ");
 input.close();
 }
 }
}

BINARY I/O

Buffered streams

▸ BufferedInputStream/BufferedOutputStream speed up
read/write by using a buffer for efficient processing.

▸ Wrappers to existing input/output streams.

▸ DataInputStream input = new DataInputStream(new
FileInputStream(“temp.dat”));

▸ DataOutputStream output = new DataOutputStream(new
FileOutputStream(“temp.dat”));

BINARY I/O

Converting bytes to objects

▸ ObjectInputStream/ObjectOutputStream reads/writes
bytes from/to files and converts them to

▸ Wrappers to existing input/output streams.

▸ Object readObject(): reads an object.

▸ void readObject(Object obj): writes an object.

