
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

4: Java GUIs and Graphics

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

FUNDAMENTALS

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: Java GUIs and Graphics

▸ Java GUIs

▸ Graphics

▸ Events

�2

Some slides adopted from Oracle tutorials

JAVA GUIS

Inheritance

▸ AWT: The Abstract Windowing Toolkit is found in the package
java.awt

▸ Heavyweight components.

▸ Implemented with native code written for that particular computer.

▸ The AWT library was written in six weeks!

▸ Swing: Java 1.2 extended AWT with the javax.swing package.

▸ Lightweight components.

▸ Written in Java.

�3

JAVA GUIS

JFrame

▸ javax.swing.JFrame inherits from java.awt.Frame

▸ The outermost container in an application.

▸ To display a window in Java:

▸ Create a class that extends JFrame.

▸ Set the size.

▸ Set the location.

▸ Set it visible.

�4

JAVA GUIS

JFrame
import javax.swing.JFrame;

public class MyFirstGUI extends JFrame {

public MyFirstGUI() {
super("First Frame");
setSize(500, 300);
setLocation(100, 100);
setVisible(true);

}

public static void main(String[] args) {
MyFirstGUI mfgui = new MyFirstGUI();

}

}

�5

JAVA GUIS

Closing a GUI

�6

▸ The default operation of the quit button is to set the
visibility to false. The program does not terminate!

▸ setDefaultCloseOperation can be used to control this
behavior.

▸ mfgui.setDefaultCloseOperation(JFrame.EXIT_O
N_CLOSE);

▸ More options (hide, do nothing, etc).

JAVA GUIS

Basic components

�7

JAVA GUIS

Interactive displays

�8

JAVA GUIS

Adding JComponents to JFrame

�9

import java.awt.Container;
import java.awt.FlowLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;

public class GUIDemo extends JFrame {
public GUIDemo() {

// Container cp = getContentPane();
// cp.setLayout(new FlowLayout());
// cp.add(new JLabel("Demo"));
// cp.add(new JButton("Button"));
JPanel mainPanel = new JPanel(new FlowLayout());
mainPanel.add(new JLabel("Demo"));
mainPanel.add(new JButton("Button"));
setContentPane(mainPanel);
setSize(500, 300);
setVisible(true);

}

public static void main(String[] args) {
GUIDemo gd = new GUIDemo();
gd.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}
}

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: Java GUIs and Graphics

▸ Java GUIs

▸ Graphics

▸ Events

�10

GRAPHICS

Java Graphics

�11

▸ Create arbitrary objects you want to draw:

▸ Rectangle2D.Double, Line.Double, etc.

▸ Constructors take x, y coordinates and dimensions, but don’t
actually draw items.

▸ All drawing takes place in paint method using a “graphics content”.

▸ Triggered implicitly by uncovering window or explicitly by calling
the repaint method.

▸ Adds repaint event to draw queue and eventually draws it.

GRAPHICS

Graphics context

�12

▸ All drawing is done in paint method of component.

▸ public void paint (Graphics g)

▸ g is a graphics context provided by the system.

▸ “pen” that does the drawing.

▸ You call repaint() not paint().

▸ Need to import classes from java.awt.*, java.geom.*,
javax.swing.*

▸ See MyGraphicsDemo.

GRAPHICS

General graphics applications

�13

▸ Create an extension of component (JPanel or JFrame)
and implement paint method in subclass.

▸ At start of paint() method cast g to Graphics2D.

▸ Call repaint() every time you want the component to be
redrawn.

GRAPHICS

Geometric objects

�14

▸ Objects from classes Rectangle2D.Double, Line2D.Double,
etc. from java.awt.geom

▸ Constructors take parameters x, y, width, height but don’t draw
object.

▸ Rectangle2D.Double

▸ Ellipse2D.Double

▸ Arc2D.Double

▸ etc.

GRAPHICS

Drawing

�15

▸ myObj.setFrame(x, y,
width, height): moves and
sets size of component

▸ g2.draw(myObj): gives
outline

▸ g2.fill(myObj): gives filled
version

▸ g2.drawString(“a
string”, x, y): draws string

GRAPHICS

java.awt.Color

�16

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: Java GUIs and Graphics

▸ Java GUIs

▸ Graphics

▸ Events

�17

EVENTS

Action listeners

�18

‣ Define what should be done when a user performs certain operations.

‣ e.g., clicks a button, chooses a menu item, presses Enter, etc.

‣ The application should implement the ActionListener interface.

‣ An instance of the application should be registered as a listener on one or more components.

‣ Implement the actionPerformed method.

public class MultiButtonApp implements ActionListener {
 ...
 //where initialization occurs:
 button1.addActionListener(this);
 button2.addActionListener(this);

 ...
 public void actionPerformed(ActionEvent e) {
 if(e.getSource() == button1){
 //do something
 }
 }
}

https://docs.oracle.com/javase/tutorial/uiswing/events/actionlistener.html

https://docs.oracle.com/javase/7/docs/api/java/awt/event/ActionListener.html
https://docs.oracle.com/javase/tutorial/uiswing/events/actionlistener.html

EVENTS

Mouse listeners

�19

‣ Define what should be done when a user enters a component, presses or releases one of the
mouse buttons.

‣ The application should implement the MouseListener interface

‣ Implement methods mousePressed, mouseReleased, mouseEntered, mouseExited, and
mouseClicked.

‣ Or extend the MouseAdapter class

‣ Which has default implementations of all of them.

public class MouseEventDemo ... implements MouseListener {
 //where initialization occurs:
 //Register for mouse events on blankArea and the panel.
 blankArea.addMouseListener(this);
 addMouseListener(this);
 ...

 public void mousePressed(MouseEvent e) {
 saySomething("Mouse pressed; # of clicks: "
 + e.getClickCount(), e);
 }

https://docs.oracle.com/javase/tutorial/uiswing/events/mouselistener.html

https://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseListener.html
https://docs.oracle.com/javase/7/docs/api/java/awt/event/MouseAdapter.html
https://docs.oracle.com/javase/tutorial/uiswing/events/mouselistener.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 4: Java GUIs and Graphics

▸ Java GUIs

▸ Graphics

▸ Events

�20

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Java Graphics: https://github.com/pomonacs622019fa/Handouts/blob/master/graphics.md

▸ Programming with GUIs: http://www.cs.pomona.edu/classes/cs062/handouts/JavaGUI.pdf

▸ Swing/GUI Cheat Sheet: https://github.com/pomonacs622019fa/Handouts/blob/master/swing.md

▸ Writing Event Listeners: https://docs.oracle.com/javase/tutorial/uiswing/events/index.html

�21

https://github.com/pomonacs622019fa/Handouts/blob/master/graphics.md
http://www.cs.pomona.edu/classes/cs062/handouts/JavaGUI.pdf
https://github.com/pomonacs622019fa/Handouts/blob/master/swing.md
https://docs.oracle.com/javase/tutorial/uiswing/events/index.html

