
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

35-36: Directed Graphs

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

GRAPHS

TODAY’S LECTURE IN A NUTSHELL

Lecture 35-36: Directed Graphs

▸ Introduction to Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Topological Sort

▸ Strongly Connected Components

�2

Some slides adopted from Algorithms 4th Edition or COS226

Directed Graph Terminology

▸ Directed Graph (or digraph) : set of vertices V connected pairwise by a set of directed edges E.

▸ E.g., V = {0,1,2,3,4,5,6,7,8,9,10,11,12},  
E = {{0,1}, {0,5}, {2,0}, {2,3},{3,2},{3,5},{4,2},{4,3},{5,4},{6,0},{6,4},{6,9},{7,6}{7,8},{8,7},{8,9},
{9,10},{9,11},{10,12},{11,4},{11,12},{12,9}}.

▸ Directed path: a sequence of vertices in which there is a directed edge pointing from each
vertex in the sequence to its successor in the sequence, with no repeated edges.

▸ A simple directed path is a directed path with no repeated vertices.

▸ Directed cycle: Directed path with at least one edge whose first and last vertices are the same.

▸ A simple directed cycle is a directed cycle with no repeated vertices (other than the first and
last).

▸ The length of a cycle or a path is its number of edges.

�3INTRODUCTION TO DIRECTED GRAPHS

Directed Graph Terminology

▸ Self-loop: an edge that connects a vertex to itself.

▸ Two edges are parallel if they connect the same pair of vertices.

▸ The outdegree of a vertex is the number of edges pointing from it.

▸ The indegree of a vertex is the number of edges pointing to it.

▸ A vertex w is reachable from a vertex v if there is a directed path
from v to w.

▸ Two vertices v and w are strongly connected if they are mutually
reachable.

�4INTRODUCTION TO DIRECTED GRAPHS

INTRODUCTION TO DIRECTED GRAPHS

Directed Graph Terminology

▸ A digraph is strongly connected if there is a directed path
from every vertex to every other vertex.

▸ A digraph that is not strongly connected consists of a set
of strongly connected components, which are maximal
strongly connected subgraphs.

▸ A directed acyclic graph (DAG) is a digraph is a graph with
no directed cycles.

�5

Anatomy of a digraph

�6INTRODUCTION TO DIRECTED GRAPHS

INTRODUCTION TO DIRECTED GRAPHS

Digraph Applications

�7

Digraph Vertex Edge

Web Web page Link

Cell phone Person Placed call

Financial Bank Transaction

Transportation Intersection One-way street

Game Board Legal move

Citation Article Citation

Infectious Diseases Person Infection

Food web Species Predator-prey
relationship

INTRODUCTION TO DIRECTED GRAPHS

Popular digraph problems

�8

Problem Description

s->t path Is there a path from s to t?

Shortest s->t path What is the shortest path from s to t?

Directed cycle Is there a directed cycle in the digraph?

Topological sort Can vertices be sorted so all edges point from earlier to
later vertices?

Strong connectivity Is there a directed path between every pair of vertices?

TODAY’S LECTURE IN A NUTSHELL

Lecture 35-36: Directed Graphs

▸ Introduction to Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Topological Sort

▸ Strongly Connected Components

�9

DIRECTED GRAPHS

Basic Graph API

▸ public class Digraph

▸ Digraph(int V): create an empty digraph with V vertices.

▸ void addEdge(int v, int w): add an edge v->w.

▸ Iterable<Integer> adj(int v): return vertices adjacent from v.

▸ int V(): number of vertices.

▸ int E(): number of edges.

▸ Digraph reverse(): reverse edges of digraph.

�10

DIRECTED GRAPHS

Digraph representation: adjacency list

▸ Maintain vertex-indexed array of lists.

▸ Good for sparse graphs (edges proportional to
�) which are much more common in the real
world.

▸ Algorithms based on iterating over vertices
adjacent from �.

▸ Space efficient (�).

▸ Constant time for adding a directed edge.

▸ Lookup of a directed edge or iterating over
vertices adjacent from � is � .

|V |

v

|E | + |V |

v outdegree(v)

�11

DIRECTED GRAPHS

Adjacency-list digraph representation in Java

public class Digraph {

 private final int V;
 private int E;
 private Bag<Integer>[] adj;

 //Initializes an empty digraph with V vertices and 0 edges.
 public Digraph(int V) {
 this.V = V;
 this.E = 0;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++) {
 adj[v] = new Bag<Integer>();
 }
 }

 //Adds the directed edge v->w to this digraph.
 public void addEdge(int v, int w) {
 E++;
 adj[v].add(w);
 }

 //Returns the vertices adjacent from vertex v.
 public Iterable<Integer> adj(int v) {
 return adj[v];
 }

�12

TODAY’S LECTURE IN A NUTSHELL

Lecture 35-36: Directed Graphs

▸ Introduction to Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Topological Sort

▸ Strongly Connected Components

�13

DEPTH-FIRST SEARCH

Reachability

▸ Find all vertices reachable from s along a directed path.

�14

https://apprize.info/science/algorithms_2/2.html

https://apprize.info/science/algorithms_2/2.html

DEPTH-FIRST SEARCH

Depth-first search in digraphs

▸ Same method as for undirected graphs.

▸ Every undirected graph is a digraph with edges in both directions.

▸ Maximum number of edges in a simple digraph is � .

▸ DFS (to visit a vertex v)

▸ Mark vertex v.

▸ Recursively visit all unmarked vertices w adjacent from v.

▸ Typical applications:

▸ Find a directed path from source vertex s to a given target vertex v.

▸ Topological sort.

▸ Directed cycle detection.

n(n − 1)

�15

DEPTH-FIRST SEARCH

Depth-first search

�16

DEPTH-FIRST SEARCH

Directed depth-first search in Java

public class DirectedDFS {
 private boolean[] marked; // marked[v] = is there an s->v path?

 public DirectedDFS(Digraph G, int s) {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 // directed depth first search from v
 private void dfs(Digraph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 dfs(G, w);
 }
 }
 }

�17

DEPTH-FIRST SEARCH

Alternative iterative implementation with a stack

public class DirectedDFS {
 private boolean[] marked; // marked[v] = is there an s->v path?

 public DirectedDFS(Digraph G, int s) {
 marked = new boolean[G.V()];
 dfs(G, s);
 }

 // iterative dfs that uses a stack
 private void dfs(Digraph G, int v) {
 Stack stack = new Stack();
 s.push(v);  
 while (!stack.isEmpty()) {
 int vertex = stack.pop();
 if (!marked[vertex]) {
 marked[vertex] = true;
 while (int w : G.adj(vertex)) {
 if (!marked[w])
 stack.push(w);
 }
 }
 }
 }

�18

DEPTH-FIRST SEARCH

Depth-first search Analysis

▸ DFS marks all vertices reachable from s in time proportional to
� in the worst case.

▸ Initializing arrays marked takes time proportional to � .

▸ Each adjacency-list entry is examined exactly once and there are �
such edges.

▸ Once we run DFS, we can check if vertex v is reachable from s in
constant time. We can also find the s->v path (if it exists) in time
proportional to its length.

|V | + |E |

|V |

E

�19

TODAY’S LECTURE IN A NUTSHELL

Lecture 35-36: Directed Graphs

▸ Introduction to Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Topological Sort

▸ Strongly Connected Components

�20

BREADTH-FIRST SEARCH

Breadth-first search

▸ Same method as for undirected graphs.

▸ Every undirected graph is a digraph with edges in both directions.

▸ BFS (from source vertex s)

▸ Put s on queue and mark s as visited.

▸ Repeat until the queue is empty:

▸ Dequeue vertex v.

▸ Enqueue all unmarked vertices adjacent from v, and mark them.

▸ Typical applications:

▸ Find the shortest (in terms of number of edges) directed path between two vertices in time
proportional to � .|E | + |V |

�21

�22

TODAY’S LECTURE IN A NUTSHELL

Lecture 35-36: Directed Graphs

▸ Introduction to Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Topological Sort

▸ Strongly Connected Components

�23

TOPOLOGICAL SORT

Depth-first orders

▸ If we save the vertex given as argument to recursive dfs in a data
structure, we have three possible orders of seeing the vertices:

▸ Preorder: Put the vertex on a queue before the recursive calls.

▸ Postorder: Put the vertex on a queue after the recursive calls.

▸ Reverse postorder: Put the vertex on a stack after the recursive
calls.

�24

TOPOLOGICAL SORT

Depth-first orders

public class DepthFirstOrder {
 private boolean[] marked; // marked[v] = has v been marked in dfs?
 private Queue<Integer> preorder; // vertices in preorder
 private Queue<Integer> postorder; // vertices in postorder
 private Stack<Integer> reversePostOrder; // vertices in reverse postorder

 /**
 * Determines a depth-first order for the digraph {@code G}.
 * @param G the digraph
 */
 public DepthFirstOrder(Digraph G) {
 postorder = new Queue<Integer>();
 preorder = new Queue<Integer>();
 reversePostOrder = new Stack<Integer>();
 marked = new boolean[G.V()];
 for (int v = 0; v < G.V(); v++)
 if (!marked[v]) dfs(G, v);
 }

 // run DFS in digraph G from vertex v and compute preorder/postorder
 private void dfs(Digraph G, int v) {
 marked[v] = true;
 preorder.enqueue(v);
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 dfs(G, w);
 }
 }
 postorder.enqueue(v);
 reversePostorder.push(v);
 }

�25

TOPOLOGICAL SORT

Depth-first orders

�26

TOPOLOGICAL SORT

Topological sort

▸ Goal: Order the vertices of a DAG so that all edges point from an
earlier vertex to a later vertex.

▸ Think of modeling major requirements as a DAG.

▸ Reverse postorder in DAG is a topological sort.

▸ With DFS, we can topologically sort a DAG in � time.|E | + |V |

�27

TEXT �28

TOPOLOGICAL SORT

Summary

▸ Single-source reachability in a digraph: DFS/BFS.

▸ Shortest path in a digraph: BFS.

▸ Topological sort in a DAG: DFS.

�29

TODAY’S LECTURE IN A NUTSHELL

Lecture 35-36: Directed Graphs

▸ Introduction to Directed Graphs

▸ Digraph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Topological Sort

▸ Strongly Connected Components

�30

STRONGLY CONNECTED COMPONENTS

Is a digraph strongly connected?

▸ Pick a random starting vertex s.

▸ Run DFS/BFS starting at s.

▸ If have not reached all vertices, return false.

▸ Reverse edges.

▸ Run DFS/BFS again on reversed graph.

▸ If have not reached all vertices, return false.

▸ Else return true.

�31

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 4.2 (Pages 566-594)

▸ Website:

▸ https://algs4.cs.princeton.edu/42digraph/

�32

Practice Problems:

▸ 4.2.1-4.27

https://algs4.cs.princeton.edu/42digraph/

