CS062 DATA STRUCTURES AND ADVANCED PROGRAMMING

35–36: Directed Graphs

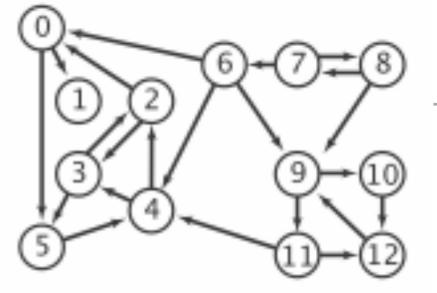
Alexandra Papoutsaki Lectures

Mark Kampe Labs

Lecture 35-36: Directed Graphs

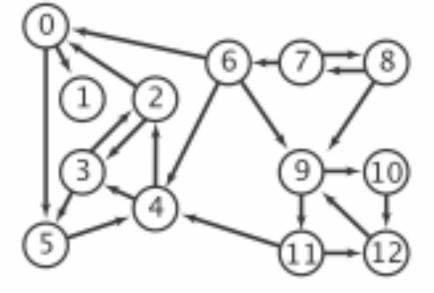
- Introduction to Directed Graphs
- Digraph API
- Depth-First Search
- Breadth-First Search
- Topological Sort
- Strongly Connected Components

Directed Graph Terminology



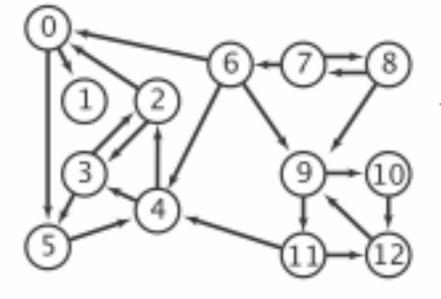
- Directed Graph (or digraph) : set of vertices V connected pairwise by a set of directed edges E.
 - E.g., $V = \{0,1,2,3,4,5,6,7,8,9,10,11,12\}, E = \{\{0,1\},\{0,5\},\{2,0\},\{2,3\},\{3,2\},\{3,5\},\{4,2\},\{4,3\},\{5,4\},\{6,0\},\{6,4\},\{6,9\},\{7,6\},\{7,8\},\{8,7\},\{8,9\},\{9,10\},\{9,11\},\{10,12\},\{11,12\},\{12,9\}\}.$
- Directed path: a sequence of vertices in which there is a directed edge pointing from each vertex in the sequence to its successor in the sequence, with no repeated edges.
 - A simple directed path is a directed path with no repeated vertices.
- Directed cycle: Directed path with at least one edge whose first and last vertices are the same.
 - A simple directed cycle is a directed cycle with no repeated vertices (other than the first and last).
- > The length of a cycle or a path is its number of edges.

Directed Graph Terminology



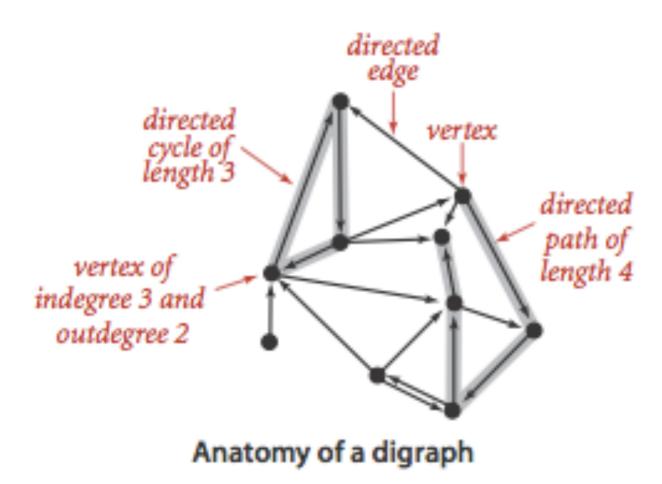
- Self-loop: an edge that connects a vertex to itself.
- Two edges are parallel if they connect the same pair of vertices.
- The outdegree of a vertex is the number of edges pointing from it.
- The indegree of a vertex is the number of edges pointing to it.
- A vertex w is reachable from a vertex v if there is a directed path from v to w.
- Two vertices v and w are strongly connected if they are mutually reachable.

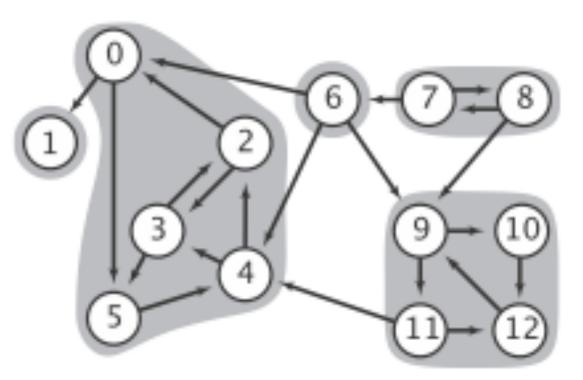
Directed Graph Terminology



- A digraph is strongly connected if there is a directed path from every vertex to every other vertex.
- A digraph that is not strongly connected consists of a set of strongly connected components, which are maximal strongly connected subgraphs.
- A directed acyclic graph (DAG) is a digraph is a graph with no directed cycles.

Anatomy of a digraph





A digraph and its strong components

Digraph Applications

Digraph	Vertex	Edge	
Web	Web page	Link	
Cell phone	Person	Placed call	
Financial	Bank	Transaction	
Transportation	Intersection	One-way street	
Game	Board	Legal move	
Citation	Article	Citation	
Infectious Diseases	Person	Infection	
Food web	Species	Predator-prey relationship	

Popular digraph problems

Problem	blem Description		
s->t path	Is there a path from s to t?		
Shortest s->t path	What is the shortest path from s to t?		
Directed cycle	Is there a directed cycle in the digraph?		
Topological sort	Can vertices be sorted so all edges point from earlier to later vertices?		
Strong connectivity	nectivity Is there a directed path between every pair of vertices?		

Lecture 35-36: Directed Graphs

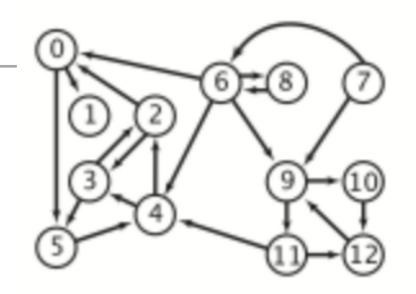
- Introduction to Directed Graphs
- Digraph API
- Depth-First Search
- Breadth-First Search
- Topological Sort
- Strongly Connected Components

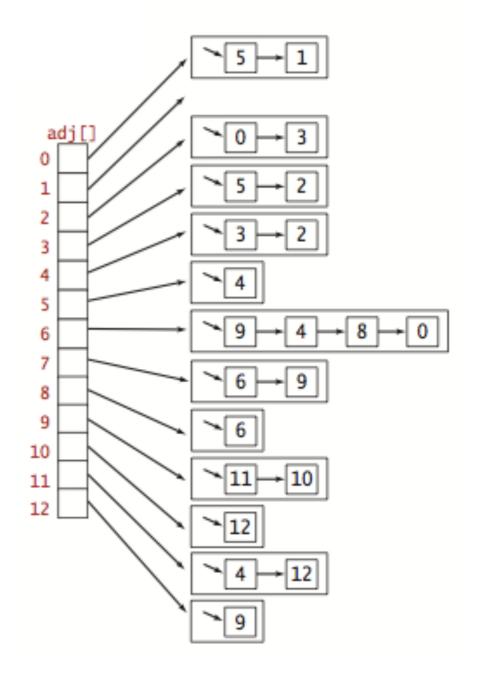
Basic Graph API

- public class Digraph
- Digraph(int V): create an empty digraph with V vertices.
- void addEdge(int v, int w): add an edge v->w.
- Iterable<Integer> adj(int v): return vertices adjacent from v.
- int V(): number of vertices.
- int E(): number of edges.
- Digraph reverse(): reverse edges of digraph.

Digraph representation: adjacency list

- Maintain vertex-indexed array of lists.
- Good for sparse graphs (edges proportional to |V|) which are much more common in the real world.
- Algorithms based on iterating over vertices adjacent from v.
- Space efficient (|E| + |V|).
- Constant time for adding a directed edge.
- Lookup of a directed edge or iterating over vertices adjacent from v is *outdegree(v)*.





Adjacency-list digraph representation in Java

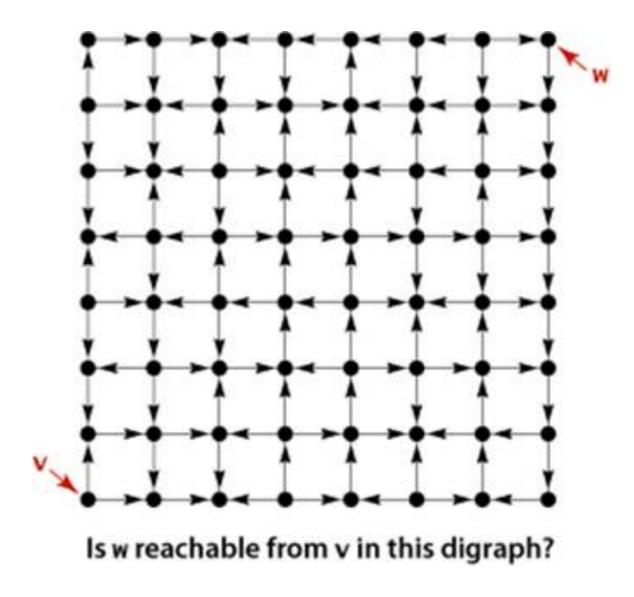
```
public class Digraph {
    private final int V;
    private int E;
    private Bag<Integer>[] adj;
    //Initializes an empty digraph with V vertices and 0 edges.
    public Digraph(int V) {
        this.V = V;
        this.E = 0;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new Bag<Integer>();
        }
    }
    //Adds the directed edge v->w to this digraph.
    public void addEdge(int v, int w) {
        E++;
        adj[v].add(w);
   }
    //Returns the vertices adjacent from vertex v.
    public Iterable<Integer> adj(int v) {
       return adj[v];
    }
```

Lecture 35-36: Directed Graphs

- Introduction to Directed Graphs
- Digraph API
- Depth-First Search
- Breadth-First Search
- Topological Sort
- Strongly Connected Components

Reachability

Find all vertices reachable from s along a directed path.



Depth-first search in digraphs

- Same method as for undirected graphs.
 - Every undirected graph is a digraph with edges in both directions.
 - Maximum number of edges in a simple digraph is n(n-1).
- DFS (to visit a vertex V)
 - Mark vertex V.
 - Recursively visit all unmarked vertices W adjacent from V.
- Typical applications:
 - Find a directed path from source vertex S to a given target vertex V.
 - Topological sort.
 - Directed cycle detection.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED DFS DEMO

*

Robert Sedgewick | Kevin Wayne

http://algs4.cs.princeton.edu

Directed depth-first search in Java

```
public class DirectedDFS {
    private boolean[] marked; // marked[v] = is there an s->v path?
    public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    // directed depth first search from v
    private void dfs(Digraph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, w);
            }
        }
    }
}
```

Alternative iterative implementation with a stack

```
public class DirectedDFS {
   private boolean[] marked; // marked[v] = is there an s->v path?
   public DirectedDFS(Digraph G, int s) {
        marked = new boolean[G.V()];
        dfs(G, s);
    }
    // iterative dfs that uses a stack
    private void dfs(Digraph G, int v) {
        Stack stack = new Stack();
        s.push(v);
        while (!stack.isEmpty()) {
            int vertex = stack.pop();
            if (!marked[vertex]) {
                marked[vertex] = true;
                while (int w : G.adj(vertex)) {
                    if (!marked[w])
                        stack.push(w);
                }
            }
        }
    }
```

Depth-first search Analysis

- DFS marks all vertices reachable from S in time proportional to |V| + |E| in the worst case.
 - Initializing arrays marked takes time proportional to |V|.
 - Each adjacency-list entry is examined exactly once and there are E such edges.
- Once we run DFS, we can check if vertex ∨ is reachable from S in constant time. We can also find the S->V path (if it exists) in time proportional to its length.

Lecture 35-36: Directed Graphs

- Introduction to Directed Graphs
- Digraph API
- Depth-First Search
- Breadth-First Search
- Topological Sort
- Strongly Connected Components

Breadth-first search

- Same method as for undirected graphs.
 - Every undirected graph is a digraph with edges in both directions.
- BFS (from source vertex S)
 - Put s on queue and mark s as visited.
 - Repeat until the queue is empty:
 - Dequeue vertex V.
 - Enqueue all unmarked vertices adjacent from v, and mark them.
- Typical applications:
 - Find the shortest (in terms of number of edges) directed path between two vertices in time proportional to |E| + |V|.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED BFS DEMO

*

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Lecture 35-36: Directed Graphs

- Introduction to Directed Graphs
- Digraph API
- Depth-First Search
- Breadth-First Search
- Topological Sort
- Strongly Connected Components

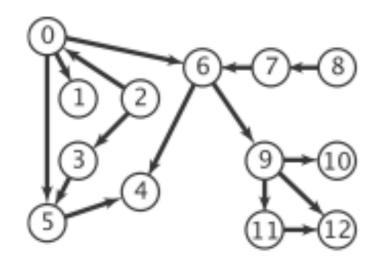
Depth-first orders

- If we save the vertex given as argument to recursive dfs in a data structure, we have three possible orders of seeing the vertices:
 - Preorder: Put the vertex on a queue before the recursive calls.
 - Postorder: Put the vertex on a queue after the recursive calls.
 - Reverse postorder: Put the vertex on a stack after the recursive calls.

Depth-first orders

```
public class DepthFirstOrder {
    private boolean[] marked;
                                    // marked[v] = has v been marked in dfs?
   private Queue<Integer> preorder; // vertices in preorder
    private Queue<Integer> postorder; // vertices in postorder
    private Stack<Integer> reversePostOrder; // vertices in reverse postorder
    /**
     * Determines a depth-first order for the digraph { @code G }.
     * (param G the digraph
     */
    public DepthFirstOrder(Digraph G) {
       postorder = new Queue<Integer>();
       preorder = new Queue<Integer>();
       reversePostOrder = new Stack<Integer>();
       marked
                = new boolean[G.V()];
       for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
    }
    // run DFS in digraph G from vertex v and compute preorder/postorder
    private void dfs(Digraph G, int v) {
       marked[v] = true;
       preorder.enqueue(v);
       for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, W);
            }
        }
       postorder.enqueue(v);
       reversePostorder.push(v);
  }
```

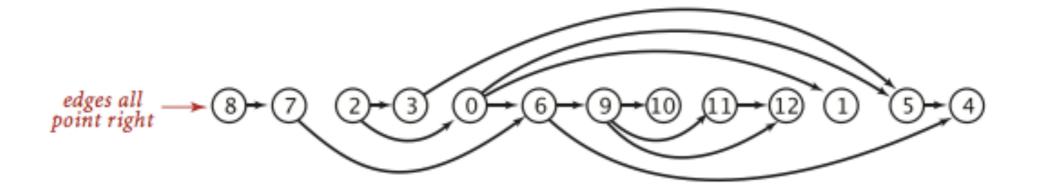
Depth-first orders



	is (eorder order of O calls		postorder is order in which vertices are done	
	pre		post		reversePost
dfs(0) dfs(5) dfs(4) 4 done 5 done	0 0 5 0 5 4	queue	4 4 5	queue	4 5 4
dfs(1) 1 done dfs(6) dfs(9) dfs(11) dfs(12)	0 5 4 1 0 5 4 1 6 0 5 4 1 6 9 0 5 4 1 6 9 1 0 5 4 1 6 9 1		451		154
12 done 11 done dfs(10)	0541691		4511 4511	2 11	12 1 5 4 11 12 1 5 4
10 done check 12 9 done check 4				2 11 10 9	10 11 12 1 5 4 9 10 11 12 1 5 4
6 done 0 done check 1 dfs(2)	0541691	12 10 2		2 11 10 9 6 2 11 10 9 6 0	6 9 10 11 12 1 5 4 0 6 9 10 11 12 1 5 4
check 0 dfs(3) check 5	0541691				
3 done 2 done check 3 check 4 check 5				2 11 10 9 6 0 3 2 11 10 9 6 0 3 2	3 0 6 9 10 11 12 1 5 4 2 3 0 6 9 10 11 12 1 5 4
check 6 dfs(7) check 6 7 done	0541691	L 12 10 2 3 7	4511	2 11 10 9 6 0 3 2 7	7 2 3 0 6 9 10 11 12 1 5 4
dfs(8) check 7 8 done check 9 check 10 check 11 check 12	0541691	L 12 10 2 3 7 8		2 11 10 9 6 0 3 2 7 8	8 7 2 3 0 6 9 10 11 12 1 5 4 reverse postorder

Topological sort

- Goal: Order the vertices of a DAG so that all edges point from an earlier vertex to a later vertex.
 - > Think of modeling major requirements as a DAG.
- Reverse postorder in DAG is a topological sort.
- With DFS, we can topologically sort a DAG in |E| + |V| time.



Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

4.2 TOPOLOGICAL SORT DEMO

*

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Summary

- Single-source reachability in a digraph: DFS/BFS.
- Shortest path in a digraph: BFS.
- Topological sort in a DAG: DFS.

Lecture 35-36: Directed Graphs

- Introduction to Directed Graphs
- Digraph API
- Depth-First Search
- Breadth-First Search
- Topological Sort
- Strongly Connected Components

Is a digraph strongly connected?

- Pick a random starting vertex S.
- Run DFS/BFS starting at S.
 - If have not reached all vertices, return false.
- Reverse edges.
- Run DFS/BFS again on reversed graph.
 - If have not reached all vertices, return false.
 - Else return true.

Readings:

- Textbook: Chapter 4.2 (Pages 566-594)
- Website:
 - https://algs4.cs.princeton.edu/42digraph/

Practice Problems:

▶ 4.2.1-4.27