35062

DATA STRUCTURES AND ADVANCED PROGRAMMING
39-36: Directed Graphs

v y ‘v:“::"fg
V4 A\ N
~ 2SN

" 4% \ Alexandra Papoutsaki =
S | ABS

Y 7 Lecrures

TODAY'S LECTURE IN A NUTSHELL

Lecture 35-36: Directed Graphs

» Introduction to Directed Graphs
» Digraph API

» Depth-First Search

» Breadth-First Search

» Topological Sort

» Strongly Connected Components

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION TO DIRECTED GRAPHS

m‘@" 3
Directed Graph Terminology @g?i

» Directed Graph (or digraph) : set of vertices V connected pairwise by a set of directed edges E.

» E.g.,V={0,1,2,3,4,5,6,7,8,9,10,11,12},

E ={{0,1}{0,5} {2,0}, {2,3},{3,2},{3,5},{4,2},{4,3},{5,4},{6,0}{6,4}{6,9}{7,6{7,8},{8,7},{8,9},
{9.10},{92,11}{10,12}{11,4}{11,12}{12,9}}.

» Directed path: a sequence of vertices in which there is a directed edge pointing from each
vertex in the sequence to its successor in the sequence, with no repeated edges.

» Asimple directed path is a directed path with no repeated vertices.
» Directed cycle: Directed path with at least one edge whose first and last vertices are the same.

» Asimple directed cycle is a directed cycle with no repeated vertices (other than the first and
last).

» The length of a cycle or a path is its number of edges.

INTRODUCTION TO DIRECTED GRAPHS W 4
Directed Graph Terminology %
Oz O

» Self-loop: an edge that connects a vertex to itself.

» Two edges are parallel if they connect the same pair of vertices.

» The outdegree of a vertex is the number of edges pointing from it.
» The indegree of a vertex is the number of edges pointing to it.

» Avertex Wis reachable from a vertex v if there is a directed path
from v to w.

» Two vertices V and W are strongly connected if they are mutually
reachable.

INTRODUCTION TO DIRECTED GRAPHS @

B D=® s
Directed Graph Terminology ,;‘}‘?
0e

@/

» A digraph is strongly connected if there is a directed path
from every vertex to every other vertex.

» A digraph that is not strongly connected consists of a set
of strongly connected components, which are maximal
strongly connected subgraphs.

» A directed acyclic graph (DAG) is a digraph is a graph with
no directed cycles.

INTRODUCTION TO DIRECTED GRAPHS

Anatomy of a digraph

directed
edge
diref:cd 1 vertex
0
l?:gthg\ 1
vertex of
indegree 3 and
outdegree 2
Anatomy of a digraph

A digraph and its strong components

INTRODUCTION TO DIRECTED GRAPHS

Digraph Applications

Digraph Vertex Edge
Web Web page Link
Cell phone Person Placed call
Financial Bank Transaction
Transportation Intersection One-way street
Game Board Legal move
Citation Article Citation
Infectious Diseases Person Infection
Food web Species Predator-prey

relationship

INTRODUCTION TO DIRECTED GRAPHS

Popular digraph problems

Problem

s->t path

Description

Is there a path from s to t?

Shortest s->t path

What is the shortest path from s to t?

Directed cycle

Is there a directed cycle in the digraph?

Topological sort

Can vertices be sorted so all edges point from earlier to
later vertices?

Strong connectivity

Is there a directed path between every pair of vertices?

TODAY'S LECTURE IN A NUTSHELL

Lecture 35-36: Directed Graphs

» Introduction to Directed Graphs
» Digraph API

» Depth-First Search

» Breadth-First Search

» Topological Sort

» Strongly Connected Components

DIRECTED GRAPHS 10

Basic Graph API

» public class Digraph

» Digraph(int V): create an empty digraph with V vertices.

» void addEdge(int v, int w):add an edge v->w.

» Iterable<Integer> adj(int v): return vertices adjacent from v.
» 1nt V(): number of vertices.

» 1nt EQ): number of edges.

» Digraph reverse(): reverse edges of digraph.

DIRECTED GRAPHS

Digraph representation: adjacency list

» Maintain vertex-indexed array of lists.

» Good for sparse graphs (edges proportional to

| V|) which are much more common in the real
world.

» Algorithms based on iterating over vertices
adjacent from v.

» Space efficient(|E|+|V]).
» Constant time for adding a directed edge.

» Lookup of a directed edge or iterating over
vertices adjacent from v is outdegree(v).

adj [

0 00 N OO bW N e O

i
N O

11

10

12

12

DIRECTED GRAPHS

Adjacency-list digraph representation in Java

public class Digraph {

private final int V;
private int E;
private Bag<Integer>[] adj;

//Initializes an empty digraph with V vertices and 0 edges.
public Digraph(int V) {
this.V = V;

this.E = 0;

adj = (Bag<Integer>[]) new Bag[V];

for (int v = 0; v < V; v++) {
adj[v] = new Bag<Integer>();

}

}

//Adds the directed edge v->w to this digraph.
public void addEdge(int v, int w) {

E++;

adj[v].add(w);

//Returns the vertices adjacent from vertex v.
public Iterable<Integer> adj(int v) {
return adj[v];

}

12

TODAY'S LECTURE IN A NUTSHELL

13

Lecture 35-36: Directed Graphs

» Introduction to Directed Graphs
» Digraph API

» Depth-First Search

» Breadth-First Search

» Topological Sort

» Strongly Connected Components

DEPTH-FIRST SEARCH

Reachability

» Find all vertices reachable from s along a directed path.

L] L4 ®
! L] [~ T~ e
Y Y | i Y Y
® >0« O >0 »>0-=« - ’ - &
A A A ‘
Y v | | |
Q—»Qd——?-—»‘ﬁ‘«—‘<-~’—->‘
A A |
Y Y | | Y Y
Y | | Y
e o< —¢<—o—>§<——’—n
A |
o< o > »k‘ .
e > N
" T =%
Y Y Y
o >0 » L—»O—»Q« — -9
v o 1] b A '|
\ .
*Q—>Q—>‘<—‘—>Q4—-- 0= @

Is w reachable from v in this digraph?

https://apprize.info/science/algorithms 2/2.html

14

https://apprize.info/science/algorithms_2/2.html

DEPTH-FIRST SEARCH

Depth-first search in digraphs

» Same method as for undirected graphs.
» Every undirected graph is a digraph with edges in both directions.
» Maximum number of edges in a simple digraph is n(n — 1).
» DFS (to visit a vertex v)
» Mark vertex v.
» Recursively visit all unmarked vertices w adjacent from v.

» Typical applications:

» Find a directed path from source vertex s to a given target vertex v.

» Topological sort.

» Directed cycle detection.

15

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED DFS DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

DEPTH-FIRST SEARCH

Directed depth-first search in Java

public class DirectedDFS {
private boolean[] marked; // marked[v] = 1s there an s->v path?

public DirectedDFS(Digraph G, int s) {
marked = new boolean[G.V()];
dfs (G, s);
}

// directed depth first search from v
private void dfs(Digraph G, int v) {
marked[v] = true;
for (int w : G.adj(v)) {
if (!marked[w]) {
dfs (G, w);
}

17

DEPTH-FIRST SEARCH

Alternative iterative implementation with a stack

public class DirectedDFS {
private boolean[] marked; // marked[v] = is there an s->v path?

public DirectedDFS(Digraph G, int s) {
marked = new boolean[G.V()];
dfs (G, s);
}

// literative dfs that uses a stack
private void dfs(Digraph G, int v) {
Stack stack = new Stack();
s.push(v);
while (!stack.isEmpty()) {
int vertex = stack.pop();
if (!marked[vertex]) {
marked[vertex] = true;
while (int w : G.adj(vertex)) {
if (!marked[w])
stack.push(w);

18

DEPTH-FIRST SEARCH 19

Depth-first search Analysis

» DFS marks all vertices reachable from s in time proportional to
| V| + | E] in the worst case.

» Initializing arrays marked takes time proportional to | V|.

» Each adjacency-list entry is examined exactly once and there are E
such edges.

» Once we run DFS, we can check if vertex v is reachable from s in
constant time. We can also find the s->V path (if it exists) in time
proportional to its length.

TODAY'S LECTURE IN A NUTSHELL

20

Lecture 35-36: Directed Graphs

» Introduction to Directed Graphs
» Digraph API

» Depth-First Search

» Breadth-First Search

» Topological Sort

» Strongly Connected Components

BREADTH-FIRST SEARCH

Breadth-first search

» Same method as for undirected graphs.

» Every undirected graph is a digraph with edges in both directions.

» BFS (from source vertex S)

» Puts on queue and mark s as visited.
» Repeat until the queue is empty:
» Dequeue vertex v.
» Enqueue all unmarked vertices adjacent from v, and mark them.

» Typical applications:

» Find the shortest (in terms of number of edges) directed path between two vertices in time
proportional to |E| + | V].

21

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.2 DIRECTED BFS DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

TODAY'S LECTURE IN A NUTSHELL

23

Lecture 35-36: Directed Graphs

» Introduction to Directed Graphs
» Digraph API

» Depth-First Search

» Breadth-First Search

» Topological Sort

» Strongly Connected Components

TOPOLOGICAL SORT 24

Depth-first orders

» If we save the vertex given as argument to recursive dfs in a data
structure, we have three possible orders of seeing the vertices:

» Preorder: Put the vertex on a queue before the recursive calls.
» Postorder: Put the vertex on a queue after the recursive calls.

» Reverse postorder: Put the vertex on a stack after the recursive
calls.

TOPOLOGICAL SORT

Depth-first orders

public class DepthFirstOrder ({

private boolean[] marked; // marked[v] = has v been marked in dfs?
private Queue<Integer> preorder; // vertices in preorder

private Queue<Integer> postorder; // vertices in postorder

private Stack<Integer> reversePostOrder; // vertices in reverse postorder
J**

* Determines a depth-first order for the digraph {@code G}.
* @param G the digraph
*/
public DepthFirstOrder (Digraph G) {
postorder = new Queue<Integer>();

preorder = new Queue<Integer>();
reversePostOrder = new Stack<Integer>();
marked = new boolean[G.V()];

for (int v = 0; v < G.V(); v++)
if (!marked[v]) dfs(G, V);
}

// run DFS in digraph G from vertex v and compute preorder/postorder
private void dfs(Digraph G, int v) {
marked[v] = true;
preorder.enqueue (V) ;
for (int w : G.adj(v)) {
if (!marked[w]) {
dfs (G, w);
}
}

postorder.enqueue (V) ;
reversePostorder.push(v);

25

TOPOLOGICAL SORT

26

Depth-first orders

dfs(0)
dfs(5)
dfs(4)
4 done
5 done
dfs(l)
1 done
dfs(6)
dfs(9)
dfs(11)
dfs(12)
12 done
11 done
dfs(10)
10 done
check 12
9 done
check 4
6 done
0 done
check 1
dfs(2)
check 0
dfs(3)
check §
3 done
2 done
check 3
check 4
check 5
check 6
dfs(7)
check 6
7 done
dfs(8)
check 7
8 done
check 9
check 10
check 11
check 12

postorder
is order
preorder in which
is order o vertices
dfs() calls are done
I
! !
pre post reversePost
0
05 sup
054 queue queue stack
/ 4 4 /
45 54
0541
451 154
05416
054169
05416911
0541691112
45112 12154
4511211 1112154
054169111210
451121110 101112154
4511211109 9101112154
45112111096 69101112154
451121110960 069101112154
0541691112102
0541691112102 3
4511211109603 3069101112154
45112111096032 23069101112154
054169111210237
451121110960327 723069101112154
0541691112102378
4511211109603278 8723069101112154

f

reverse
postorder

TOPOLOGICAL SORT

Topological sort

» Goal: Order the vertices of a DAG so that all edges point from an
earlier vertex to a later vertex.

» Think of modeling major requirements as a DAG.

» Reverse postorder in DAG is a topological sort.

» With DFS, we can topologically sorta DAG in |E| + | V| time.

porsesihe— O @ © @

27

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

4.2 TOPOLOGICAL SORT DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

TOPOLOGICAL SORT

29

Summary

» Single-source reachability in a digraph: DFS/BFS.
» Shortest path in a digraph: BFS.

» Topological sortin a DAG: DFS.

TODAY'S LECTURE IN A NUTSHELL

30

Lecture 35-36: Directed Graphs

» Introduction to Directed Graphs
» Digraph API

» Depth-First Search

» Breadth-First Search

» Topological Sort

» Strongly Connected Components

STRONGLY CONNECTED COMPONENTS

Is a digraph strongly connected?

4

4

4

4

Pick a random starting vertex s.
Run DFS/BFS starting at s.

» If have not reached all vertices, return false.
Reverse edges.

Run DFS/BFS again on reversed graph.

» If have not reached all vertices, return false.

» Else return true.

31

ASSIGNED READINGS AND PRACTICE PROBLEMS

32

Readings:

» Textbook: Chapter 4.2 (Pages 566-594)
» Website:

» https://algs4.cs.princeton.edu/42digraph/

Practice Problems:

» 4.2.1-4.27

https://algs4.cs.princeton.edu/42digraph/

