
CS062  
DATA STRUCTURES AND ADVANCED PROGRAMMING

34: Undirected Graphs

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition 

GRAPHS



TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs 

▸ Graph API 

▸ Depth-First Search 

▸ Breadth-First Search 

▸ Connected Components
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UNDIRECTED GRAPHS

Graph representation

▸ Vertex representation: Here, integers between 0 and V-1. 

▸ We will use a symbol table to map between names and 
integers.
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UNDIRECTED GRAPHS

Basic Graph API 

▸ public class Graph

▸ Graph(int V): create an empty graph with V vertices. 

▸ void addEdge(int v, int w): add an edge v-w. 

▸ Iterable<Integer> adj(int v): return vertices 
adjacent to v. 

▸ int V(): number of vertices. 

▸ int E(): number of edges.
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UNDIRECTED GRAPHS

Example of how to use the Graph API to process the graph

▸ public static int degree(Graph g, int v){  
    int count = 0;  
    for(int w : g.adj(v))  
        count++;  
    return count;  
}
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UNDIRECTED GRAPHS

Graph density

▸ In a simple graph (no parallel edges or loops), if � , then: 

▸ minimum number of edges is 0 and 

▸ maximum number of edges is � . 

▸ Dense graph -> edges closer to maximum. 

▸ Sparse graph -> edges closer to minimum.

|V | = n

n(n − 1)/2
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UNDIRECTED GRAPHS

Graph representation: adjacency matrix

▸ Maintain a � -by-�  boolean array;  
for each edge v-w: 

▸ adj[v][w] = adj[w][v] = true; (1). 

▸ Good for dense graphs (edges close to � ). 

▸ Constant time for lookup of an edge. 

▸ Constant time for adding an edge. 

▸ �  time for iterating over vertices adjacent to �. 

▸ Symmetric, therefore wastes space in undirected 
graphs (� ). 

▸ Not widely used in practice.

|V | |V |

|V |2

|V | v

|V |2
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A B C D

A 0 1 1 1

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

A B
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UNDIRECTED GRAPHS

Graph representation: adjacency list

▸ Maintain vertex-indexed array of lists. 

▸ Good for sparse graphs (edges proportional to 
� ) which are much more common in the real 
world. 

▸ Algorithms based on iterating over vertices 
adjacent to �. 

▸ Space efficient (� ). 

▸ Constant time for adding an edge. 

▸ Lookup of an edge or iterating over vertices 
adjacent to � is � .

|V |

v

|E | + |V |

v degree(v)
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UNDIRECTED GRAPHS

Adjacency-list graph representation in Java

public class Graph {

    private final int V;
    private int E;
    private Bag<Integer>[] adj;
    
    //Initializes an empty graph with V vertices and 0 edges.
    public Graph(int V) {
        this.V = V;
        this.E = 0;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < V; v++) {
            adj[v] = new Bag<Integer>();
        }
    }

    //Adds the undirected edge v-w to this graph. Parallel edges and self-loops allowed
    public void addEdge(int v, int w) {
        E++;
        adj[v].add(w);
        adj[w].add(v);
    }

    //Returns the vertices adjacent to vertex v.
    public Iterable<Integer> adj(int v) {
       return adj[v];
    }
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A bag is a collection where removing items is not supported—its purpose is to provide clients with the ability to collect items and then to iterate 
through the collected items



TODAY’S LECTURE IN A NUTSHELL
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▸ Graph API 

▸ Depth-First Search 

▸ Breadth-First Search 

▸ Connected Components
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DEPTH-FIRST SEARCH

Mazes as graphs

▸ Vertex = intersection; edge = passage
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http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html
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DEPTH-FIRST SEARCH

How to survive a maze: a lesson from a Greek myth

▸ Theseus escaped from the labyrinth after killing the Minotaur with the following 
strategy instructed by Ariadne: 

▸ Unroll a ball of string behind you. 

▸ Mark each newly discovered intersection. 

▸ Retrace steps when no unmarked options. 

▸ Also known as the Trémaux algorithm.
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DEPTH-FIRST SEARCH

Depth-first search

▸ Goal: Systematically traverse a graph. 

▸ DFS (to visit a vertex v) 

▸ Mark vertex v. 

▸ Recursively visit all unmarked vertices w adjacent to v. 

▸ Typical applications: 

▸ Find all vertices connected to a given vertex. 

▸ Find a path between two vertices.
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DEPTH-FIRST SEARCH

Depth-first search
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DEPTH-FIRST SEARCH

Depth-first search

▸ Goal: Find all vertices connected to s (and a corresponding path). 

▸ Idea: Mimic maze exploration. 

▸ Algorithm: 

▸ Use recursion (ball of string). 

▸ Mark each visited vertex (and keep track of edge taken to visit it). 

▸ Return (retrace steps) when no unvisited options. 

▸ When started at vertex s, DFS marks all vertices connected to s (and no other).
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DEPTH-FIRST SEARCH

Depth-first search in Java

public class DepthFirstSearch {
     private boolean[] marked;    // marked[v] = is there an s-v path?
     private int[] edgeTo;        // edgeTo[v] = previous vertex on path from s to v  

    public DepthFirstSearch(Graph G, int s) {
        marked = new boolean[G.V()];
        edgeTo = new int[G.V()];
        dfs(G, s);
    }

    // depth first search from v
    private void dfs(Graph G, int v) {
        marked[v] = true;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                edgeTo[w] = v;
                dfs(G, w);
            }
        }
    }
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DEPTH-FIRST SEARCH

Depth-first search Analysis

▸ DFS marks all vertices connected to s in time proportional to 
�  in the worst case. 

▸ Initializing arrays marked and edgeTo takes time proportional to 
� . 

▸ Each adjacency-list entry is examined exactly once and there are 
�  such edges (two for each edge). 

▸ Once we run DFS, we can check if vertex v is connected to s in 
constant time. We can also find the v-s path (if it exists) in time 
proportional to its length.

|V | + |E |

|V |

2E
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BREADTH-FIRST SEARCH

Breadth-first search

▸ BFS (from source vertex s) 

▸ Put s on a queue and mark it as visited. 

▸ Repeat until the queue is empty: 

▸ Dequeue vertex v. 

▸ Enqueue each of v’s unmarked neighbors and mark them. 

▸ Basic idea: BFS traverses vertices in order of distance from s.
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BREADTH-FIRST SEARCH

Breadth-first search in Java

public class BreadthFirstPaths {
   private boolean[] marked;  // marked[v] = is there an s-v path
    private int[] edgeTo;      // edgeTo[v] = previous edge on shortest s-v path
    private int[] distTo;      // distTo[v] = number of edges shortest s-v path

    public BreadthFirstPaths(Graph G, int s) {
        marked = new boolean[G.V()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        bfs(G, s);
   }

   private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        distTo[s] = 0;
        marked[s] = true;
        q.enqueue(s);

        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
                if (!marked[w]) {
                    edgeTo[w] = v;
                    distTo[w] = distTo[v] + 1;
                    marked[w] = true;
                    q.enqueue(w);
                }
            }
        }
    }
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BREADTH-FIRST SEARCH

Breadth-first search

▸ DFS: Put unvisited vertices on a stack. 

▸ BFS: Put unvisited vertices on a queue. 

▸ Shortest path problem: Find path from s to t that uses the fewest number of edges. 

▸ E.g., calculate the fewest numbers of hops in a communication network. 

▸ E.g., calculate the Kevin Bacon number or Erdös number. 

▸ BFS computes shortest paths from s to all vertices in a graph in time proportional to 
�  

▸ The queue always consists of zero or more vertices of distance k from s, followed 
by zero or more vertices of k+1.

|E | + |V |
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CONNECTED COMPONENTS

Connectivity queries

▸ Goal: Preprocess graph to answer questions of the form “is v 
connected to w” in constant time. 

▸ public class CC

▸ CC(Graph G): find connected components in G. 

▸ boolean connected(int v, int w): are v and w connected? 

▸ int count(): number of connected components. 

▸ int id(int v): component identifier for vertex v.

�24



CONNECTED COMPONENTS

Connected components

▸ Goal: Partition vertices into connected components. 

▸ Connected Components 

▸ Initialize all vertices as unmarked. 

▸ For each unmarked vertex, run DFS to identify all vertices discovered as part of the 
same component.
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CONNECTED COMPONENTS

Connected components

▸ Goal: Partition vertices into connected components. 

▸ Connected Components 

▸ Initialize all vertices as unmarked. 

▸ For each unmarked vertex, run DFS to identify all vertices discovered as part of the 
same component.
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CONNECTED COMPONENTS

Connected Components in Java

public class CC {
    private boolean[] marked;   // marked[v] = has vertex v been marked?
    private int[] id;           // id[v] = id of connected component containing v
    private int[] size;         // size[id] = number of vertices in given component
    private int count;          // number of connected components

    public CC(Graph G) {
        marked = new boolean[G.V()];
        id = new int[G.V()];
        size = new int[G.V()];
        for (int v = 0; v < G.V(); v++) {
            if (!marked[v]) {
                dfs(G, v);
                count++;
            }
        }
    }

    private void dfs(Graph G, int v) {
        marked[v] = true;
        id[v] = count;
        size[count]++;
        for (int w : G.adj(v)) {
            if (!marked[w]) {
                dfs(G, w);
            }
        }
    }
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 4.1 (Pages 522-556) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/41graph/
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Practice Problems:

▸ 4.1.1-4.1.6, 4.1.9, 4.1.11

https://algs4.cs.princeton.edu/41graph/

