# CSO62 <br> DATA STRUCTURES AND ADVANCED PROGRAMMING 

## 34: Undirected Graphs



Alexandra Papoutsaki Lectures

Mark Kampe
LaBS

## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components


## Graph representation

- Vertex representation: Here, integers between 0 and V-1.
- We will use a symbol table to map between names and integers.

| 0 | 5 |
| :--- | :--- |
| 4 | 3 |
| 0 | 1 |
| 9 | 12 |
| 6 | 4 |
| 5 | 4 |
| 0 | 2 |
| 11 | 12 |
| 9 | 10 |
| 0 | 6 |
| 7 | 8 |
| 9 | 11 |
| 5 | 3 |

## Basic Graph API

p public class Graph

- Graph (int V): create an empty graph with $V$ vertices.
- void addEdge(int v, int w): add an edge v-w.
- Iterable<Integer> adj(int v): return vertices adjacent to v .
- int V(): number of vertices.
- int E(): number of edges.

Example of how to use the Graph API to process the graph

- public static int degree(Graph g, int v)\{ int count $=0$; for(int w : g.adj(v))
count++; return count;
\}


## Graph density

- In a simple graph (no parallel edges or loops), if $|V|=n$, then:
- minimum number of edges is 0 and
- maximum number of edges is $n(n-1) / 2$.
- Dense graph -> edges closer to maximum.
- Sparse graph -> edges closer to minimum.


## Graph representation: adjacency matrix

- Maintain a $|V|-$ by- $|V|$ boolean array; for each edge v -w:
- $\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=$ true; (1).
- Good for dense graphs (edges close to $|V|^{2}$ ).
- Constant time for lookup of an edge.
- Constant time for adding an edge.
- $|V|$ time for iterating over vertices adjacent to $v$.
- Symmetric, therefore wastes space in undirected graphs ( $|V|^{2}$ ).

|  | $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{A}$ | 0 | 1 | 1 | 1 |
| $\mathbf{B}$ | 1 | 0 | 0 | 1 |
| $\mathbf{C}$ | 1 | 0 | 0 | 0 |
| $\mathbf{D}$ | 1 | 1 | 0 | 0 |

gapmo


- Not widely used in practice.


## Graph representation: adjacency list

- Maintain vertex-indexed array of lists.
- Good for sparse graphs (edges proportional to $|V|)$ which are much more common in the real world.
- Algorithms based on iterating over vertices adjacent to $v$.
- Space efficient ( $|E|+|V|)$.
- Constant time for adding an edge.
, Lookup of an edge or iterating over vertices adjacent to $v$ is degree(v).



## Adjacency-list graph representation in Java

```
public class Graph {
private final int v;
private int E;
private Bag<Integer>[] adj;
//Initializes an empty graph with V vertices and O edges.
public Graph(int V) {
    this.V = V;
    this.E = 0;
    adj = (Bag<Integer>[]) new Bag[V];
    for (int v = 0; v < V; v++) {
        adj[v] = new Bag<Integer>();
        }
}
//Adds the undirected edge v-w to this graph. Parallel edges and self-loops allowed
public void addEdge(int v, int w) {
    E++;
    adj[v].add(w);
    adj[w].add(v);
}
//Returns the vertices adjacent to vertex v.
public Iterable<Integer> adj(int v) {
    return adj[v];
}
```

A bag is a collection where removing items is not supported-its purpose is to provide clients with the ability to collect items and then to iterate through the collected items

## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components


## Mazes as graphs

- Vertex = intersection; edge = passage



## How to survive a maze: a lesson from a Greek myth

- Theseus escaped from the labyrinth after killing the Minotaur with the following strategy instructed by Ariadne:
- Unroll a ball of string behind you.
- Mark each newly discovered intersection.
- Retrace steps when no unmarked options.
- Also known as the Trémaux algorithm.



## Depth-first search

- Goal: Systematically traverse a graph.
- DFS (to visit a vertex v)
- Mark vertex v.
- Recursively visit all unmarked vertices W adjacent to V .
, Typical applications:
- Find all vertices connected to a given vertex.
- Find a path between two vertices.



## 4. 1 Depth-First Search Demo

Robert Sedgewick I Kevin Wayne

http://algs4.cs.princeton.edu

## Depth-first search

- Goal: Find all vertices connected to $s$ (and a corresponding path).
- Idea: Mimic maze exploration.
- Algorithm:
- Use recursion (ball of string).
- Mark each visited vertex (and keep track of edge taken to visit it).
- Return (retrace steps) when no unvisited options.
- When started at vertex s, DFS marks all vertices connected to s (and no other).


## Depth-first search in Java

```
public class DepthFirstSearch {
    private boolean[] marked;
    private int[] edgeTo;
    public DepthFirstSearch(Graph G, int s) {
    marked = new boolean[G.V()];
    edgeTo = new int[G.V()];
    dfs(G, s);
}
// depth first search from v
private void dfs(Graph G, int v) {
    marked[v] = true;
    for (int w : G.adj(v)) {
        if (!marked[w]) {
                edgeTo[w] = v;
                dfs(G, W);
        }
    }
    }
```


## Depth-first search Analysis

- DFS marks all vertices connected to s in time proportional to $|V|+|E|$ in the worst case.
- Initializing arrays marked and edgeTo takes time proportional to $|V|$.
- Each adjacency-list entry is examined exactly once and there are $2 E$ such edges (two for each edge).
- Once we run DFS, we can check if vertex $v$ is connected to $S$ in constant time. We can also find the V-S path (if it exists) in time proportional to its length.


## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components


## Breadth-first search

- BFS (from source vertex s)
- Put s on a queue and mark it as visited.
- Repeat until the queue is empty:
, Dequeue vertex v.
. Enqueue each of v's unmarked neighbors and mark them.
- Basic idea: BFS traverses vertices in order of distance from s.


### 4.1 Breadth-First Search Demo

Robert Sedgewick I Kevin Wayne

http://algs4.cs.princeton.edu

## Breadth-first search in Java

```
public class BreadthFirstPaths {
    private boolean[] marked; // marked[v] = is there an s-v path
    private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
    private int[] distTo; // distTo[v] = number of edges shortest s-v path
    public BreadthFirstPaths(Graph G, int s) {
        marked = new boolean[G.v()];
        distTo = new int[G.V()];
        edgeTo = new int[G.V()];
        bfs(G, s);
    }
    private void bfs(Graph G, int s) {
        Queue<Integer> q = new Queue<Integer>();
        distTo[s] = 0;
        marked[s] = true;
        q.enqueue(s);
        while (!q.isEmpty()) {
            int v = q.dequeue();
            for (int w : G.adj(v)) {
            if (!marked[w]) {
                edgeTo[w] = vi
                distTo[w] = distTo[v] + 1;
                marked[w] = true;
                q.enqueue(w);
            }
            }
        }
    }
```


## Breadth-first search

- DFS: Put unvisited vertices on a stack.
- BFS: Put unvisited vertices on a queue.
- Shortest path problem: Find path from $s$ to $t$ that uses the fewest number of edges.
- E.g., calculate the fewest numbers of hops in a communication network.
- E.g., calculate the Kevin Bacon number or Erdös number.
- BFS computes shortest paths from $s$ to all vertices in a graph in time proportional to $|E|+|V|$
- The queue always consists of zero or more vertices of distance $k$ from $s$, followed by zero or more vertices of $\mathrm{k}+1$.


## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components


## Connectivity queries

- Goal: Preprocess graph to answer questions of the form "is v connected to ${ }^{\prime \prime}$ in constant time.
- public class CC
- CC(Graph G): find connected components in G.
, boolean connected(int $v$, int $w$ ): are $v$ and $w$ connected?
b int count(): number of connected components.
, int id(int v): component identifier for vertex v.


## Connected components

- Goal: Partition vertices into connected components.
- Connected Components
- Initialize all vertices as unmarked.
* For each unmarked vertex, run DFS to identify all vertices discovered as part of the same component.


Robert Sedgewick I Kevin Wayne
http://algs4.cs.princeton.edu

### 4.1 Connected Components Demo

## Connected Components in Java

```
public class CC {
    private boolean[] marked; // marked[v] = has vertex v been marked?
    private int[] id;
    private int[] size; // size[id] = number of vertices in given component
    private int count; // number of connected components
    id[v] = id of connected component containing v
public CC(Graph G) {
        marked = new boolean[G.V()];
        id = new int[G.v()];
        size = new int[G.V()]
        for (int v = 0; v < G.V(); v++) {
        if (!marked[v]) {
            dfs(G, v);
            count++;
        }
    }
}
private void dfs(Graph G, int v) {
    marked[v] = true;
    id[v] = count;
    size[count]++
    for (int w : G.adj(v)) {
        if (!marked[w]) {
            dfs(G, w);
        }
    }
}
```


## Lecture 34: Undirected Graphs

- Graph API
- Depth-First Search
- Breadth-First Search
- Connected Components


## Readings:

- Textbook: Chapter 4.1 (Pages 522-556)
- Website:
- https://algs4.cs.princeton.edu/41graph/


## Practice Problems:

( 4.1.1-4.1.6, 4.1.9, 4.1.11

