
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

34: Undirected Graphs

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

GRAPHS

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

�2

Some slides adopted from Algorithms 4th Edition or COS226

UNDIRECTED GRAPHS

Graph representation

▸ Vertex representation: Here, integers between 0 and V-1.

▸ We will use a symbol table to map between names and
integers.

�3

UNDIRECTED GRAPHS

Basic Graph API

▸ public class Graph

▸ Graph(int V): create an empty graph with V vertices.

▸ void addEdge(int v, int w): add an edge v-w.

▸ Iterable<Integer> adj(int v): return vertices
adjacent to v.

▸ int V(): number of vertices.

▸ int E(): number of edges.

�4

UNDIRECTED GRAPHS

Example of how to use the Graph API to process the graph

▸ public static int degree(Graph g, int v){  
 int count = 0;  
 for(int w : g.adj(v))  
 count++;  
 return count;  
}

�5

UNDIRECTED GRAPHS

Graph density

▸ In a simple graph (no parallel edges or loops), if � , then:

▸ minimum number of edges is 0 and

▸ maximum number of edges is � .

▸ Dense graph -> edges closer to maximum.

▸ Sparse graph -> edges closer to minimum.

|V | = n

n(n − 1)/2

�6

UNDIRECTED GRAPHS

Graph representation: adjacency matrix

▸ Maintain a � -by-� boolean array;  
for each edge v-w:

▸ adj[v][w] = adj[w][v] = true; (1).

▸ Good for dense graphs (edges close to �).

▸ Constant time for lookup of an edge.

▸ Constant time for adding an edge.

▸ � time for iterating over vertices adjacent to �.

▸ Symmetric, therefore wastes space in undirected
graphs (�).

▸ Not widely used in practice.

|V | |V |

|V |2

|V | v

|V |2

�7

A B C D

A 0 1 1 1

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

A B

DC

UNDIRECTED GRAPHS

Graph representation: adjacency list

▸ Maintain vertex-indexed array of lists.

▸ Good for sparse graphs (edges proportional to
�) which are much more common in the real
world.

▸ Algorithms based on iterating over vertices
adjacent to �.

▸ Space efficient (�).

▸ Constant time for adding an edge.

▸ Lookup of an edge or iterating over vertices
adjacent to � is � .

|V |

v

|E | + |V |

v degree(v)

�8

UNDIRECTED GRAPHS

Adjacency-list graph representation in Java

public class Graph {

 private final int V;
 private int E;
 private Bag<Integer>[] adj;

 //Initializes an empty graph with V vertices and 0 edges.
 public Graph(int V) {
 this.V = V;
 this.E = 0;
 adj = (Bag<Integer>[]) new Bag[V];
 for (int v = 0; v < V; v++) {
 adj[v] = new Bag<Integer>();
 }
 }

 //Adds the undirected edge v-w to this graph. Parallel edges and self-loops allowed
 public void addEdge(int v, int w) {
 E++;
 adj[v].add(w);
 adj[w].add(v);
 }

 //Returns the vertices adjacent to vertex v.
 public Iterable<Integer> adj(int v) {
 return adj[v];
 }

�9

A bag is a collection where removing items is not supported—its purpose is to provide clients with the ability to collect items and then to iterate
through the collected items

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

�10

DEPTH-FIRST SEARCH

Mazes as graphs

▸ Vertex = intersection; edge = passage

�11

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

http://oatzy.blogspot.com/2011/09/playing-with-pac-man.html

DEPTH-FIRST SEARCH

How to survive a maze: a lesson from a Greek myth

▸ Theseus escaped from the labyrinth after killing the Minotaur with the following
strategy instructed by Ariadne:

▸ Unroll a ball of string behind you.

▸ Mark each newly discovered intersection.

▸ Retrace steps when no unmarked options.

▸ Also known as the Trémaux algorithm.

�12

DEPTH-FIRST SEARCH

Depth-first search

▸ Goal: Systematically traverse a graph.

▸ DFS (to visit a vertex v)

▸ Mark vertex v.

▸ Recursively visit all unmarked vertices w adjacent to v.

▸ Typical applications:

▸ Find all vertices connected to a given vertex.

▸ Find a path between two vertices.

�13

DEPTH-FIRST SEARCH

Depth-first search

�14

DEPTH-FIRST SEARCH

Depth-first search

▸ Goal: Find all vertices connected to s (and a corresponding path).

▸ Idea: Mimic maze exploration.

▸ Algorithm:

▸ Use recursion (ball of string).

▸ Mark each visited vertex (and keep track of edge taken to visit it).

▸ Return (retrace steps) when no unvisited options.

▸ When started at vertex s, DFS marks all vertices connected to s (and no other).

�15

DEPTH-FIRST SEARCH

Depth-first search in Java

public class DepthFirstSearch {
 private boolean[] marked; // marked[v] = is there an s-v path?
 private int[] edgeTo; // edgeTo[v] = previous vertex on path from s to v  

 public DepthFirstSearch(Graph G, int s) {
 marked = new boolean[G.V()];
 edgeTo = new int[G.V()];
 dfs(G, s);
 }

 // depth first search from v
 private void dfs(Graph G, int v) {
 marked[v] = true;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 dfs(G, w);
 }
 }
 }

�16

DEPTH-FIRST SEARCH

Depth-first search Analysis

▸ DFS marks all vertices connected to s in time proportional to
� in the worst case.

▸ Initializing arrays marked and edgeTo takes time proportional to
� .

▸ Each adjacency-list entry is examined exactly once and there are
� such edges (two for each edge).

▸ Once we run DFS, we can check if vertex v is connected to s in
constant time. We can also find the v-s path (if it exists) in time
proportional to its length.

|V | + |E |

|V |

2E

�17

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

�18

BREADTH-FIRST SEARCH

Breadth-first search

▸ BFS (from source vertex s)

▸ Put s on a queue and mark it as visited.

▸ Repeat until the queue is empty:

▸ Dequeue vertex v.

▸ Enqueue each of v’s unmarked neighbors and mark them.

▸ Basic idea: BFS traverses vertices in order of distance from s.

�19

�20

BREADTH-FIRST SEARCH

Breadth-first search in Java

public class BreadthFirstPaths {
 private boolean[] marked; // marked[v] = is there an s-v path
 private int[] edgeTo; // edgeTo[v] = previous edge on shortest s-v path
 private int[] distTo; // distTo[v] = number of edges shortest s-v path

 public BreadthFirstPaths(Graph G, int s) {
 marked = new boolean[G.V()];
 distTo = new int[G.V()];
 edgeTo = new int[G.V()];
 bfs(G, s);
 }

 private void bfs(Graph G, int s) {
 Queue<Integer> q = new Queue<Integer>();
 distTo[s] = 0;
 marked[s] = true;
 q.enqueue(s);

 while (!q.isEmpty()) {
 int v = q.dequeue();
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 edgeTo[w] = v;
 distTo[w] = distTo[v] + 1;
 marked[w] = true;
 q.enqueue(w);
 }
 }
 }
 }

�21

BREADTH-FIRST SEARCH

Breadth-first search

▸ DFS: Put unvisited vertices on a stack.

▸ BFS: Put unvisited vertices on a queue.

▸ Shortest path problem: Find path from s to t that uses the fewest number of edges.

▸ E.g., calculate the fewest numbers of hops in a communication network.

▸ E.g., calculate the Kevin Bacon number or Erdös number.

▸ BFS computes shortest paths from s to all vertices in a graph in time proportional to
�

▸ The queue always consists of zero or more vertices of distance k from s, followed
by zero or more vertices of k+1.

|E | + |V |

�22

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

�23

CONNECTED COMPONENTS

Connectivity queries

▸ Goal: Preprocess graph to answer questions of the form “is v
connected to w” in constant time.

▸ public class CC

▸ CC(Graph G): find connected components in G.

▸ boolean connected(int v, int w): are v and w connected?

▸ int count(): number of connected components.

▸ int id(int v): component identifier for vertex v.

�24

CONNECTED COMPONENTS

Connected components

▸ Goal: Partition vertices into connected components.

▸ Connected Components

▸ Initialize all vertices as unmarked.

▸ For each unmarked vertex, run DFS to identify all vertices discovered as part of the
same component.

�25

CONNECTED COMPONENTS

Connected components

▸ Goal: Partition vertices into connected components.

▸ Connected Components

▸ Initialize all vertices as unmarked.

▸ For each unmarked vertex, run DFS to identify all vertices discovered as part of the
same component.

�26

CONNECTED COMPONENTS

Connected Components in Java

public class CC {
 private boolean[] marked; // marked[v] = has vertex v been marked?
 private int[] id; // id[v] = id of connected component containing v
 private int[] size; // size[id] = number of vertices in given component
 private int count; // number of connected components

 public CC(Graph G) {
 marked = new boolean[G.V()];
 id = new int[G.V()];
 size = new int[G.V()];
 for (int v = 0; v < G.V(); v++) {
 if (!marked[v]) {
 dfs(G, v);
 count++;
 }
 }
 }

 private void dfs(Graph G, int v) {
 marked[v] = true;
 id[v] = count;
 size[count]++;
 for (int w : G.adj(v)) {
 if (!marked[w]) {
 dfs(G, w);
 }
 }
 }

�27

TODAY’S LECTURE IN A NUTSHELL

Lecture 34: Undirected Graphs

▸ Graph API

▸ Depth-First Search

▸ Breadth-First Search

▸ Connected Components

�28

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 4.1 (Pages 522-556)

▸ Website:

▸ https://algs4.cs.princeton.edu/41graph/

�29

Practice Problems:

▸ 4.1.1-4.1.6, 4.1.9, 4.1.11

https://algs4.cs.princeton.edu/41graph/

