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TODAY’S LECTURE IN A NUTSHELL

Lecture 31-32: Hash tables

▸ Hash functions 

▸ Separate chaining 

▸ Linear Probing
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HASHING

Summary for symbol table operations
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HASHING

Basic plan for hashing

▸ Save items in a key-indexed table (index is a function of the key). 

▸ Hash function: Method for computing array index from key. 

‣  hash(“A”) = 2

▸ Issues:  

▸ Computing the hash function. 

▸ Method for checking whether two keys are equal. 

▸ How to handle collisions when two keys hash to same index. 

▸ Space-time tradeoff:  

▸ If no space limitation: hash function with key as index. 

▸ If no time limitation: collision resolution with sequential search. 

▸ If space and time limitation (real world): hashing
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HASHING

Computing hash function

▸ Ideal scenario: Take any key and uniformly “scramble” it to produce a symbol table 
index. 

▸ Requirements:  

▸ Computing the hash function efficiently. 

▸ Every symbol table index is equally likely for each key. 

▸ Although thoroughly researched, still problematic in practical applications. 

▸ Examples: Hashing phone numbers or social security numbers. 

▸ Bad: if we choose the first three digits (area code/geographic region and time). 

▸ Better: if we choose the last three digits. 

▸ Practical challenge: Need different approach for each key type.
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HASHING

Hashing in Java

▸ All Java classes inherit a method hashCode(), which returns an 
integer. 

▸ Requirement: If x.equals(y) then it should be 
x.hashCode()==y.hashCode().  

▸ Ideally: If !x.equals(y) then it should be  
x.hashCode()!=y.hashCode().  

▸ Default implementation: Memory address of x. 

▸ Need to override it for custom types.  

▸ Already done for us for Integer, Double, etc.
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HASHING

Equality test in Java

▸ Requirement: For any objects x, y, and z. 

▸ Reflexive: x.equals(x) is true. 

▸ Symmetric: x.equals(y) iff y.equals(x). 

▸ Transitive: if x.equals(y) and y.equals(z) then 
x.equals(z).

▸ Non-null: if x.equals(null) is false. 

▸ If you don’t override it the default implementation checks whether 
x and y refer to the same object in memory.
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HASHING

Java implementations of equals() for user-defined types

▸ public final class Date {  
     private final int month;  
     private final int day;  
     private final int year;  
     …  
     public boolean equals(Object y) {  
         if (y == this) return true;  
         if (y == null) return false;  
         if (y.getClass() != this.getClass()) return false;  
         Date that = (Date) y;  
         return (this.day == that.day &&  
                 this.month == that.month &&  
                 this.year == that.year);  
     }  
}
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HASHING

General equality test recipe in Java

▸ Optimization for reference equality. 

▸ if (y == this) return true;

▸ Check against null. 

▸ if (y == null) return false;

▸ Check that two objects are of the same type. 

▸ if (y.getClass() != this.getClass()) return false;

▸ Cast them. 

▸ Date that = (Date) y;

▸ Compare each significant field. 

▸ return (this.day == that.day && this.month == that.month && this.year == that.year);

▸ If a field is a primitive type, use ==.

▸ If a field is an object, use equals().

▸ If field is an array of primitives, use Arrays.equals().

▸ If field is an area of objects, use Arrays.deepEquals().
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HASHING

Java implementations of hashCode()

▸ public final class Integer {  
     private final int value;  
     …  
     public int hashCode() {  
          return (value);  
     }  
}

▸ public final class Boolean {  
     private final boolean value;  
     …  
     public int hashCode() {  
          if(value)    return 1231;  
          else return 1237;  
     }  
}
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HASHING

Implementing hash code for arrays

▸ 31x+y rule. 

▸ Initialize hash to 1. 

▸ Repeatedly multiply hash by 31 and add next integer in array. 

▸ public class Arrays {  
     …  
     public static int hashCode(int[] a) {  
          int hash = 1;  
          for (int i=0; i<a.length; i++) {   
              hash = 31*hash + a[i];  
          return hash;  
     }  
}
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HASHING

Implementing hash code for strings

▸ Treat a string as an array of characters.  

▸ Initialize hash to 0. 

▸ public final class String {  
     private final char[] s;  
     private int hash = 0;  
     …  
     public int hashCode() {  
          int h = hash;  
          if (h != 0) return h;  
          for (int i=0; i< length; i++) {   
              h = s[i] + (31 * h);  
          hash = h;  
          return h;  
     }  
}  

▸ Not foolproof, e.g., both Aa and BB hash to 2112. Actually, �  strings of length �  hash to the same value!2n 2n
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HASHING

Java implementations of hashCode() for user-defined types

▸ public final class Date {  
     private final int month;  
     private final int day;  
     private final int year;  
     …  
     public int hashCode() {  
         int hash = 1;  
         hash = 31*hash + ((Integer) month).hashCode();  
         hash = 31*hash + ((Integer) day).hashCode();  
         hash = 31*hash + ((Integer) year).hashCode();  
         return hash;  
         //could be also written as  
         //return Objects.hash(month, day, year); 
     }  
}
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HASHING

General hash code recipe in Java

▸ Combine each significant field using the 31x+y rule. 

▸ Shortcut 1: use Objects.hash() for all fields 
(except arrays). 

▸ Shortcut 2: use Arrays.hashCode() for primitive 
arrays. 

▸ Shortcut 3: use Arrays.deepHashCode() for 
object arrays.
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HASHING

Modular hashing

▸ Hash code: an int between �  and �  

▸ Hash function: an int between 0 and � , where �  is the hash table size (typically a prime number or power of 
2). 

▸ private int hash (Key key){  
   return key.hashCode() % m;  
}

▸ Bug! Might map to negative number. 

▸ private int hash (Key key){  
   return Math.abs(key.hashCode()) % m;  
}

▸ Very unlikely bug. For a hash code of � , Math.abs will return a negative number. 

▸ private int hash (Key key){  
   return (key.hashCode() & 0x7fffffff) % m;  
}

▸ Correct. 

−231 231 − 1

m − 1 m

−231
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HASHING

Uniform hashing assumption

▸ Uniform hashing assumption: Each key is equally likely to hash to an integer 
between � and � .  

▸ Mathematical model: balls & bins. Toss � balls uniformly at random into �  bins.  

▸ Bad news: Expect two balls in the same bin after ~�  tosses.  

▸ Birthday problem: In a random group of 23 or more people, more likely 
than not that two people will share the same birthday. 

▸ Good news: load balancing 

▸ When � , expect most loaded bin has ~�  balls. 

▸ When � , the number of balls in each bin is “likely close” to � .

0 m − 1

n m

(πm /2)

n = m ln m /ln ln n

n > > m n /m
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TODAY’S LECTURE IN A NUTSHELL

Lecture 31-32: Hash tables

▸ Hash functions 

▸ Separate chaining 

▸ Linear Probing
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SEPARATE CHAINING 

Collisions are unavoidable

▸ Collision: Two distinct keys hash to the same index. 

▸ Birthday problem: Can’t avoid collisions  
(unless you have at least quadratic memory). 

▸ Coupon collector + load balancing:  
collisions will be evenly distributed. 

▸ Challenge: how to deal with collisions efficiently.
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SEPARATE CHAINING 

Separate Chaining

▸ Use an array of �  distinct lists  
[H.P. Luhn, IBM 1953]. 

▸ Hash: Map key to integer � between � and 
� . 

▸ Insert: Put at front of i-th chain (if not 
already there). 

▸ Search: Need to only search the i-th chain.

m < n

i 0
m − 1
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SEPARATE CHAINING 

Symbol table with separate chaining implementation

public class SeparateChainingLiteHashST<Key, Value> {

    private int m = 128;  // hash table size
    private Node[] st = new Node[m];        
    // array of linked-list symbol tables. Node is inner class that holds keys and values of type Object 
 
    public Value get(Key key) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next;)  
            if (key.equals(x.key)) return (Value) x.val;  
        return null;
    }  
 
    public void put(Key key, Value val) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next;)  
            if (key.equals(x.key)) {  
                x.val = val;  
                return;  
        }  
        st[i] = new Node(key, val, st[i];
    }
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SEPARATE CHAINING

Analysis

▸ Under uniform hashing assumption, length of each chain is  
~� .  

▸ Consequence: Number of probes (calls to either equals() or 
hashCode()) for search/insert is proportional to �  (�  times 
faster than sequential search). 

▸ �  too large -> too many empty chains. 

▸ �  too small -> chains too long. 

▸ Typical choice: � ~�  -> constant time per operation.

n/m

n/m m

m

m

m 1/4n
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SEPARATE CHAINING

Resizing in a separate-chaining hash table

▸ Goal: Average length of chain �  = constant 
lookup. 

▸ Double hash table size when � . 

▸ Halve hash table size when � . 

▸ Need to rehash all keys when resizing (hash code 
does not change, but hash changes).

n/m

n/m ≥ 8

n/m ≤ 2
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SEPARATE CHAINING

Deletion in a separate-chaining hash table

▸ Find key in chain and remove it along with its 
associated value.
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SEPARATE CHAINING

Summary for symbol table operations
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TODAY’S LECTURE IN A NUTSHELL

Lecture 31-32: Hash tables

▸ Hash functions 

▸ Separate chaining 

▸ Linear Probing
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LINEAR PROBING

Open addressing

▸ Alternate approach to handle collisions. 

▸ Maintain keys and values in two parallel arrays. 

▸ When a new key collides, find next empty slot and put it there. 

▸ If the array is full, the search would not terminate.
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LINEAR PROBING

Linear probing

▸ Hash: Map key to integer � between � and � . 

▸ Insert: Put at index � if free. If not, try � , � , etc.  

▸ Search: Search table index �. If occupied but no match, try � , � , etc 

▸ If you find a gap then you know that it does not exist. 

▸ Table size �  must be greater than the number of key-value pairs �.

i 0 m − 1

i i + 1 i + 2

i i + 1 i + 2

m n
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LINEAR PROBING

Linear probing
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LINEAR PROBING

Symbol table with linear probing implementation

public class LinearProbingHashST<Key, Value> {

    private int m = 32768;  // hash table size
    private Value[] Vals = (Value[]) new Object[m];  
    private Key[] Vals = (Key[]) new Object[m];        
     
    public Value get(Key key) {
        for (int i = hash(key); keys[i] != null; i = (i+1) % m;)  
            if (key.equals(keys[i])) return vals[i];  
        return null;
    }  
 
    public void put(Key key, Value val) {
        int i;
        for (int i = hash(key); keys[i] != null; i = (i+1) % m;)  
            if (key.equals(keys[i])){  
                break;  
        }  
        keys[i] = key;  
        vals[i] = val;
    }
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LINEAR PROBING

Clustering

▸ Cluster: a contiguous block of keys. 

▸ Observation: new keys likely to hash in middle of big clusters.
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LINEAR PROBING

Analysis

▸ Proposition: Under uniform hashing assumption, the average number of probes in a linear-
probing hash table of size �  that contains �  keys is at most 

▸ �  for search hits and 

▸ �  for search misses and insertions. 

▸ [Knuth 1963] 

▸ Parameters:  

▸ �  too large -> too many empty array entries. 

▸ �  too small -> search time becomes too long. 

▸ Typical choice: � ~�  -> constant time per operation.

m n = αm

1/2(1 +
1

1 − a
)

1/2(1 +
1

(1 − a)2
)

m

m

α = n /m 1/2
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LINEAR PROBING

Resizing in a linear probing hash table

▸ Goal: Fullness of array (load factor) � . 

▸ Double hash table size when � . 

▸ Halve hash table size when � . 

▸ Need to rehash all keys when resizing (hash code does not 
change, but hash changes). 

▸ Deletion not straightforward.

n/m ≤ 1/2

n/m ≥ 1/2

n/m ≤ 1/8
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LINEAR PROBING

Summary for symbol table operations
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LINEAR PROBING

Separate chaining vs linear probing

▸ Separate chaining:  

▸ Performance degrades gracefully as number of keys 
increases. 

▸ Clustering less sensitive to poorly-designed hash function. 

▸ Potentially fewer probes.  

▸ Linear probing:  

▸ Less wasted space. 

▸ Better cache performance (locality). 
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LINEAR PROBING

Hashing: variations on the theme

▸ Two-probe hashing (separate chaining variant):  

▸ Hash to two positions, insert key in shorter of the two chains. 

▸ Reduces expected length of longest chain to � . 

▸ Double hashing (linear probing variant):  

▸ Use linear probing, but skip a variable amount, not just 1 each time you have collision. 

▸ Effectively eliminates clustering. 

▸ Can allow table to become nearly full. 

▸ More difficult to implement delete. 

▸ Cuckoo hashing (linear probing variant):  

▸ Hash to two positions, insert key into either position. If occupied, reinsert displayed key into its 
alternative position and recur. 

▸ Constant worst case time for search.

log log n
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LINEAR PROBING

Hash tables vs balanced search trees

▸ Hash tables:  

▸ Simpler to code. 

▸ No effective alternative of unordered keys. 

▸ Faster for simple keys (a few arithmetic operations versus �  compares). 

▸ Balanced search trees:  

▸ Stronger performance guarantee. 

▸ Support for ordered symbol table operations. 

▸ Easier to implement compareTo() than hashCode().  

▸ Java includes both:  

▸ Balanced search trees: java.util.TreeMap, java.util.TreeSet. 

▸ Hash tables: java.util.HashMap, java.util.IdentityHashMap.

log n
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TODAY’S LECTURE IN A NUTSHELL

Lecture 31-32: Hash tables

▸ Hash functions 

▸ Separate chaining 

▸ Linear Probing
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.4 (Pages 458-477) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/34hash/
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Practice Problems:

▸ 3.4.1-3.4.13

https://algs4.cs.princeton.edu/34hash/

