35062

DATA STRUCTURES AND ADVANCED PROGRAMMING
31-32: Hash tables

Vy "u-;z":i;\. (
. AN

" 4 \ Alexandra Papoutsaki =

* ¥ LECTURES

TODAY'S LECTURE IN A NUTSHELL

Lecture 31-32: Hash tables

» Hash functions
» Separate chaining

» Linear Probing

Some slides adopted from Algorithms 4th Edition or COS226

HASHING

Summary for symbol table operations

Worst case Average case
Search Insert Delete Search Insert Delete
Sequential
search n n n nl/?2 n nl/?2
(unordered
Binary search
(ordered lOg n n n log n n/2 n/z
array)
BST n n n 1.391ogn|1.391ogn ?
2-3search clogn | clogn | clogn | clogn | clogn clogn
tree
Red-black 210gn 210gn 210gn llOgn llogn 1]0gn

BSTs

HASHING

Basic plan for hashing

» Save items in a key-indexed table (index is a function of the key).

» Hash function: Method for computing array index from key.
» hash(“A”) = 2
* hash(“B”) = 2 777
» Issues: 0

» Computing the hash function.

» Method for checking whether two keys are equal.

» How to handle collisions when two keys hash to same index.

» Space-time tradeofft: 3

» If no space limitation: hash function with key as index.

» If no time limitation: collision resolution with sequential search.

» If space and time limitation (real world): hashing

HASHING

Computing hash function

» ldeal scenario: Take any key and uniformly “scramble” it to produce a symbol table
index.

» Requirements:
» Computing the hash function efficiently.
» Every symbol table index is equally likely for each key.
» Although thoroughly researched, still problematic in practical applications.
» Examples: Hashing phone numbers or social security numbers.
» Bad: if we choose the first three digits (area code/geographic region and time).
» Better: if we choose the last three digits.

» Practical challenge: Need different approach for each key type.

HASHING

Hashing in Java

» All Java classes inherit a method hashCode(), which returns an
Integer.

» Requirement: If Xx.equals(y) then it should be
X .hashCode()==y.hashCode().

» Ideally: If Ix.equals(y) then it should be
X .hashCode()!=y.hashCode().

» Default implementation: Memory address of x.

» Need to override it for custom types.

» Already done for us for Integer, Double, etc.

HASHING

Equality test in Java

» Requirement: For any objects X, y, and z.
» Reflexive: X.equals(x) is true.
» Symmetric: X.equals(y) iffy.equals(x).

» Transitive: if Xx.equals(y) andy.equals(z) then
X.equals(z).

» Non-null: if Xx.equals(null) is false.

» If you don't override it the default implementation checks whether
x and y refer to the same object in memory.

HASHING

Java implementations of equals() for user-defined types

» public final class Date {
private final int month;
private final int day;
private final int year;

public boolean equals(Object y) {
1f (y == this) return true;
1f (y == null) return false;
1f (y.getClass() !'= this.getClass()) return false;
Date that = (Date) y;
return (this.day == that.day &&
this.month == that.month &&
this.year == that.year);

HASHING

General equality test recipe in Java

» Optimization for reference equality.
» 1f (y == this) return true;
» Check against null.
» 1f (y == null) return false;
» Check that two objects are of the same type.
» 1t (y.getClass() !'= this.getClass()) return false;
» Cast them.
» Date that = (Date) y;

» Compare each significant field.
» return (this.day == that.day && this.month == that.month && this.year == that.year);
» If a field is a primitive type, use ==.
» If afield is an object, use equals().
» If field is an array of primitives, use Arrays.equals().

» If field is an area of objects, use Arrays.deepEquals().

HASHING 10

Java implementations of hashCode()

» public final class Integer {
private final int value;

public int hashCode() {
return (value);

¥
¥

» public final class Boolean {
private final boolean value;

public int hashCode() {
1f(value) return 1231;
else return 1237;

HASHING

Implementing hash code for arrays

» 31x+y rule.
» Initialize hash to 1.
» Repeatedly multiply hash by 31 and add next integer in array.

» public class Arrays {

public static int hashCode(int[] a) {
int hash = 1;
for (1int 1=0; 1<a.length; 1++) {
hash = 31*hash + a[1];
return hash;

11

HASHING

Implementing hash code for strings

» Treat a string as an array of characters.

» Initialize hash to 0.

» public final class String {
private final char[] s;
private int hash = 0;

public int hashCode() {

int h = hash;

1f (h !'= 0) return h;

for (int 1=0; 1< length; 1++) {
h =s[i] + (31 * h);

hash = h;

return h;

» Not foolproof, e.g., both Aa and BB hash to 2112. Actually, 2" strings of length 2n hash to the same value!

12

HASHING

13

Java implementations of hashCode() for user-defined types

4

public final class Date {
private final int month;
private final int day;
private final 1int year;

public int hashCode() {

int hash = 1;
nash = 31*hash + ((Integer) month).hashCode();
nash = 31*hash + ((Integer) day).hashCode();
nash = 31*hash + ((Integer) year).hashCode();
return hash;
//could be also written as
//return Objects.hash(month, day, year);

HASHING 14

General hash code recipe in Java

» Combine each significant field using the 31x+y rule.

» Shortcut 1: use Objects.hash() for all fields
(except arrays).

» Shortcut 2: use Arrays . hashCode() for primitive
arrays.

» Shortcut 3: use Arrays.deepHashCode() for
object arrays.

HASHING

Modular hashing

» Hash code: an int between —23! and 23! — 1

» Hash function: an int between 0 and m — 1, where m is the hash table size (typically a prime number or power of
2).

» private int hash (Key key){
return key.hashCode() % m;
by

b
» Bug! Might map to negative number.

» private int hash (Key key){
return Math.abs(key.hashCode()) % m;
by

» Very unlikely bug. For a hash code of —23!,Math . abs will return a negative number.

» private int hash (Key key){
return (key.hashCode() & Ox7fffffff) % m;
ks

» Correct.

15

HASHING 16

Uniform hashing assumption

» Uniform hashing assumption: Each key is equally likely to hash to an integer
between O and m — 1.

» Mathematical model: balls & bins. Toss n balls uniformly at random into m bins.

» Bad news: Expect two balls in the same bin after ~\/Z7rm/2) tosses.

» Birthday problem: In a random group of 23 or more people, more likely
than not that two people will share the same birthday.

» Good news: load balancing

» When n = m, expect most loaded bin has ~Inm/InInn balls.

» When n > > m, the number of balls in each bin is “likely close” to n/m.

TODAY'S LECTURE IN A NUTSHELL

17

Lecture 31-32: Hash tables

» Hash functions
» Separate chaining

» Linear Probing

SEPARATE CHAINING

18

Collisions are unavoidable

» Collision: Two distinct keys hash to the same index.

» Birthday problem: Can’t avoid collisions
(unless you have at least quadratic memory).

» Coupon collector + load balancing:
collisions will be evenly distributed.

» Challenge: how to deal with collisions efficiently.

» hash(“A”) = 2

» hash(“B”) = 2 777

SEPARATE CHAINING

19

Separate Chaining

» Use an array of m < n distinct lists
[H.P. Luhn, IBM 1953].

» Hash: Map key to integer i between 0 and
m — 1.

» Insert: Put at front of i-th chain (if not
already there).

» Search: Need to only search the i-th chain.

S

m r~ T =X » X mMm I M X P m

key hash

2

C owWww e O N RERRe R O

<

7 N\~

oW

st

N\

— independent
SequentialSearchST

, objects

first |

~ X |

l

/ l

irst Py

~ L I

I

’

first

T —{C |+ =R

Hashing with separate chaining for standard indexing client

SEPARATE CHAINING

Symbol table with separate chaining implementation

public class SeparateChainingLiteHashST<Key, Value> {

private int m = 128; // hash table size
private Node[] st = new Node[m];
// array of linked-list symbol tables. Node is inner class that holds keys and values of type Object

public Value get(Key key) {
int 1 = hash(key);
for (Node x = st[1]; x != null; x = x.next;)
1f (key.equals(x.key)) return (Value) x.val;
return null;

}

public void put(Key key, Value val) {
int 1 = hash(Ckey);
for (Node x = st[1]; x != null; x = x.next;)
1f (key.equals(x.key)) {
x.val = val;
return;

hy
st[1] = new Node(key, val, st[i];

20

SEPARATE CHAINING 21
Analysis

» Under uniform hashing assumption, length of each chain is
~n/m.

» Consequence: Number of probes (calls to either equals() or

hashCode()) for search/insert is proportional to n/m (m times
faster than sequential search).

» mtoo large -> too many empty chains.
» mtoo small -> chains too long.

» Typical choice: m~1/4n -> constant time per operation.

SEPARATE CHAINING 22

Resizing in a separate-chaining hash table

» Goal: Average length of chain n/m = constant
lookup.

» Double hash table size when n/m > 8.

» Halve hash table size when n/m < 2.

» Need to rehash all keys when resizing (hash code
does not change, but hash changes).

SEPARATE CHAINING

Deletion in a separate-chaining hash table

» Find key in chain and remove it along with its
associated value.

23

SEPARATE CHAINING

Summary for symbol table operations

Worst case Average case
Search Insert Delete Search Insert Delete
Sequential n n n n/z n n/2
search
(unordered list)
Binary search log n n n log n n/2 n/2
(ordered array)

BST n n n 1.391ogn| 1.391ogn ?
2-3searchtree clogn | clogn | clogn | clogn | clogn clogn
Red-black BST
T 2logn | 2logn | 2logn | llogn | 1logn | 1logn

Separate
chaining n n n 3—-5 3 -5 3—5

TODAY'S LECTURE IN A NUTSHELL

25

Lecture 31-32: Hash tables

» Hash functions
» Separate chaining

» Linear Probing

LINEAR PROBING

Open addressing

» Alternate approach to handle collisions.
» Maintain keys and values in two parallel arrays.
» When a new key collides, find next empty slot and put it there.

» If the array is full, the search would not terminate.

26

LINEAR PROBING

Linear probing

4

4

4

Hash: Map key to integer i between O and m — 1.

Insert: Put at index i if free. If not, tryi + 1,1 + 2, etc.

Search: Search table index i. If occupied but no match, tryi + 1,7+ 2, etc
» If you find a gap then you know that it does not exist.

Table size m must be greater than the number of key-value pairs n.

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

3.4 LINEAR PROBING DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

LINEAR PROBING

29

Linear probing

key hash
S b
E 10

A 4

E 10

X 15

P 14

01 2 3 4 5 6

7 8 9 10 11 12 13 14 15

S
0
gntries in red]E_
are new ~__ 2
2 o
keys i black g -
are probes \A cleln
5
0
M .
9
P . 8
10
S H L

entries in gray
- arée untouched
R
3
X
7
probe sequence
. wrapste 0
R X ~
- keys[]

-« yvals[]

Trace of linear-probing ST implementation for standard indexing client

LINEAR PROBING

Symbol table with linear probing implementation

public class LinearProbingHashST<Key, Value> {

private int m = 32768; // hash table size
private Value[] Vals = (Value[]) new Object[m];
private Key[] Vals = (Key[]) new Object[m];

public Value get(Key key) {
for (int 1 = hash(key); keys[i1] != null; 1 = (1+1) % m;)
1f (key.equals(Ckeys[1])) return vals[i];
return null;

}

public void put(Key key, Value val) {
int 1;
for (int 1 = hash(key); keys[1] !'= null; 1 = (1+1) % m;)
1f (key.equals(keys[1])){
break;
Iy
keys[1] = key;
vals[i] = val;

LINEAR PROBING

Clustering

» Cluster: a contiguous block of keys.

» Observation: new keys likely to hash in middle of big clusters.

31

LINEAR PROBING

Analysis

» Proposition: Under uniform hashing assumption, the average number of probes in a linear-
probing hash table of size m that contains n = am keys is at most

y 1/2(1 +) for search hits and

1 —a

y 1/72(1 + ")2) for search misses and insertions.
—a

» [Knuth 1963]

» Parameters:
» mtoo large -> too many empty array entries.
» mtoo small -> search time becomes too long.

» Typical choice: @ = n/m~1/2 -> constant time per operation.

32

LINEAR PROBING
Resizing in a linear probing hash table

» Goal: Fullness of array (load factor) n/m < 1/2.
» Double hash table size when n/m > 1/2.

» Halve hash table size when n/m < 1/8.

» Need to rehash all keys when resizing (hash code does not
change, but hash changes).

» Deletion not straightforward.

33

LINEAR PROBING 34

Summary for symbol table operations

Worst case Average case
Search Insert Delete Search Insert Delete

e n n n n/2 n n/2
(unordered list)
Binary search
(orde?eld array) lOg L 2 n log n n/2 I’l/2

BST n n n 1.391ogn|1.391ogn ?

#3searchtee clogn | clogn | clogn | clogn | clogn clogn
RedblackBS= 2logn | 2logn | 2logn | llogn | 1logn 1logn

Separate

chaining n n n 3—-5 3—5 3—5
Linear probing n n n 3 -5 3 -5 3—-5

LINEAR PROBING

Separate chaining vs linear probing

» Separate chaining:

» Performance degrades gracefully as number of keys
Increases.

» Clustering less sensitive to poorly-designed hash function.
» Potentially fewer probes.
» Linear probing:
» Less wasted space.

» Better cache performance (locality).

35

LINEAR PROBING

Hashing: variations on the theme

» Two-probe hashing (separate chaining variant):
» Hash to two positions, insert key in shorter of the two chains.
» Reduces expected length of longest chain to loglog n.

» Double hashing (linear probing variant):

» Use linear probing, but skip a variable amount, not just 1 each time you have collision.

» Effectively eliminates clustering.
» Can allow table to become nearly full.
» More difficult to implement delete.

» Cuckoo hashing (linear probing variant):

» Hash to two positions, insert key into either position. If occupied, reinsert displayed key into its
alternative position and recur.

» Constant worst case time for search.

36

LINEAR PROBING

Hash tables vs balanced search trees

» Hash tables:

» Simpler to code.

» No effective alternative of unordered keys.

» Faster for simple keys (a few arithmetic operations versus log n compares).
» Balanced search trees:

» Stronger performance guarantee.

» Support for ordered symbol table operations.

» Easier to implement compareTo() than hashCode().
» Java includes both:

» Balanced search trees: java.util.TreeMap, java.util.TreeSet.

» Hash tables: java.util.HashMap, java.util.IdentityHashMap.

37

TODAY'S LECTURE IN A NUTSHELL

38

Lecture 31-32: Hash tables

» Hash functions
» Separate chaining

» Linear Probing

ASSIGNED READINGS AND PRACTICE PROBLEMS

39

Readings:

» Textbook: Chapter 3.4 (Pages 458-477)
» Website:

» https://algs4.cs.princeton.edu/34hash/

Practice Problems:

» 3.4.1-3.4.13

https://algs4.cs.princeton.edu/34hash/

