
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

31-32: Hash tables

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SEARCHING

TODAY’S LECTURE IN A NUTSHELL

Lecture 31-32: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Linear Probing

�2

Some slides adopted from Algorithms 4th Edition or COS226

HASHING

Summary for symbol table operations

�3

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered
Binary search

(ordered
array)

BST

2-3 search
tree

Red-black
BSTs

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n ?

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

HASHING

Basic plan for hashing

▸ Save items in a key-indexed table (index is a function of the key).

▸ Hash function: Method for computing array index from key.

‣ hash(“A”) = 2

▸ Issues:

▸ Computing the hash function.

▸ Method for checking whether two keys are equal.

▸ How to handle collisions when two keys hash to same index.

▸ Space-time tradeoff:

▸ If no space limitation: hash function with key as index.

▸ If no time limitation: collision resolution with sequential search.

▸ If space and time limitation (real world): hashing

�4

A

0

1

2

3

4

‣ hash(“B”) = 2 ???

HASHING

Computing hash function

▸ Ideal scenario: Take any key and uniformly “scramble” it to produce a symbol table
index.

▸ Requirements:

▸ Computing the hash function efficiently.

▸ Every symbol table index is equally likely for each key.

▸ Although thoroughly researched, still problematic in practical applications.

▸ Examples: Hashing phone numbers or social security numbers.

▸ Bad: if we choose the first three digits (area code/geographic region and time).

▸ Better: if we choose the last three digits.

▸ Practical challenge: Need different approach for each key type.

�5

HASHING

Hashing in Java

▸ All Java classes inherit a method hashCode(), which returns an
integer.

▸ Requirement: If x.equals(y) then it should be
x.hashCode()==y.hashCode().

▸ Ideally: If !x.equals(y) then it should be  
x.hashCode()!=y.hashCode().

▸ Default implementation: Memory address of x.

▸ Need to override it for custom types.

▸ Already done for us for Integer, Double, etc.

�6

HASHING

Equality test in Java

▸ Requirement: For any objects x, y, and z.

▸ Reflexive: x.equals(x) is true.

▸ Symmetric: x.equals(y) iff y.equals(x).

▸ Transitive: if x.equals(y) and y.equals(z) then
x.equals(z).

▸ Non-null: if x.equals(null) is false.

▸ If you don’t override it the default implementation checks whether
x and y refer to the same object in memory.

�7

HASHING

Java implementations of equals() for user-defined types

▸ public final class Date {  
 private final int month;  
 private final int day;  
 private final int year;  
 …  
 public boolean equals(Object y) {  
 if (y == this) return true;  
 if (y == null) return false;  
 if (y.getClass() != this.getClass()) return false;  
 Date that = (Date) y;  
 return (this.day == that.day &&  
 this.month == that.month &&  
 this.year == that.year);  
 }  
}

�8

HASHING

General equality test recipe in Java

▸ Optimization for reference equality.

▸ if (y == this) return true;

▸ Check against null.

▸ if (y == null) return false;

▸ Check that two objects are of the same type.

▸ if (y.getClass() != this.getClass()) return false;

▸ Cast them.

▸ Date that = (Date) y;

▸ Compare each significant field.

▸ return (this.day == that.day && this.month == that.month && this.year == that.year);

▸ If a field is a primitive type, use ==.

▸ If a field is an object, use equals().

▸ If field is an array of primitives, use Arrays.equals().

▸ If field is an area of objects, use Arrays.deepEquals().

�9

HASHING

Java implementations of hashCode()

▸ public final class Integer {  
 private final int value;  
 …  
 public int hashCode() {  
 return (value);  
 }  
}

▸ public final class Boolean {  
 private final boolean value;  
 …  
 public int hashCode() {  
 if(value) return 1231;  
 else return 1237;  
 }  
}

�10

HASHING

Implementing hash code for arrays

▸ 31x+y rule.

▸ Initialize hash to 1.

▸ Repeatedly multiply hash by 31 and add next integer in array.

▸ public class Arrays {  
 …  
 public static int hashCode(int[] a) {  
 int hash = 1;  
 for (int i=0; i<a.length; i++) {  
 hash = 31*hash + a[i];  
 return hash;  
 }  
}

�11

HASHING

Implementing hash code for strings

▸ Treat a string as an array of characters.

▸ Initialize hash to 0.

▸ public final class String {  
 private final char[] s;  
 private int hash = 0;  
 …  
 public int hashCode() {  
 int h = hash;  
 if (h != 0) return h;  
 for (int i=0; i< length; i++) {  
 h = s[i] + (31 * h);  
 hash = h;  
 return h;  
 }  
}  

▸ Not foolproof, e.g., both Aa and BB hash to 2112. Actually, � strings of length � hash to the same value!2n 2n

�12

HASHING

Java implementations of hashCode() for user-defined types

▸ public final class Date {  
 private final int month;  
 private final int day;  
 private final int year;  
 …  
 public int hashCode() {  
 int hash = 1;  
 hash = 31*hash + ((Integer) month).hashCode();  
 hash = 31*hash + ((Integer) day).hashCode();  
 hash = 31*hash + ((Integer) year).hashCode();  
 return hash;  
 //could be also written as  
 //return Objects.hash(month, day, year); 
 }  
}

�13

HASHING

General hash code recipe in Java

▸ Combine each significant field using the 31x+y rule.

▸ Shortcut 1: use Objects.hash() for all fields
(except arrays).

▸ Shortcut 2: use Arrays.hashCode() for primitive
arrays.

▸ Shortcut 3: use Arrays.deepHashCode() for
object arrays.

�14

HASHING

Modular hashing

▸ Hash code: an int between � and �

▸ Hash function: an int between 0 and � , where � is the hash table size (typically a prime number or power of
2).

▸ private int hash (Key key){  
 return key.hashCode() % m;  
}

▸ Bug! Might map to negative number.

▸ private int hash (Key key){  
 return Math.abs(key.hashCode()) % m;  
}

▸ Very unlikely bug. For a hash code of � , Math.abs will return a negative number.

▸ private int hash (Key key){  
 return (key.hashCode() & 0x7fffffff) % m;  
}

▸ Correct.

−231 231 − 1

m − 1 m

−231

�15

HASHING

Uniform hashing assumption

▸ Uniform hashing assumption: Each key is equally likely to hash to an integer
between � and � .

▸ Mathematical model: balls & bins. Toss � balls uniformly at random into � bins.

▸ Bad news: Expect two balls in the same bin after ~� tosses.

▸ Birthday problem: In a random group of 23 or more people, more likely
than not that two people will share the same birthday.

▸ Good news: load balancing

▸ When � , expect most loaded bin has ~� balls.

▸ When � , the number of balls in each bin is “likely close” to � .

0 m − 1

n m

(πm /2)

n = m ln m /ln ln n

n > > m n /m

�16

TODAY’S LECTURE IN A NUTSHELL

Lecture 31-32: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Linear Probing

�17

SEPARATE CHAINING

Collisions are unavoidable

▸ Collision: Two distinct keys hash to the same index.

▸ Birthday problem: Can’t avoid collisions  
(unless you have at least quadratic memory).

▸ Coupon collector + load balancing:  
collisions will be evenly distributed.

▸ Challenge: how to deal with collisions efficiently.

�18

A

0

1

2

3

4
‣ hash(“A”) = 2

‣ hash(“B”) = 2 ???

SEPARATE CHAINING

Separate Chaining

▸ Use an array of � distinct lists  
[H.P. Luhn, IBM 1953].

▸ Hash: Map key to integer � between � and
� .

▸ Insert: Put at front of i-th chain (if not
already there).

▸ Search: Need to only search the i-th chain.

m < n

i 0
m − 1

�19

SEPARATE CHAINING

Symbol table with separate chaining implementation

public class SeparateChainingLiteHashST<Key, Value> {

 private int m = 128; // hash table size
 private Node[] st = new Node[m];  
 // array of linked-list symbol tables. Node is inner class that holds keys and values of type Object 
 
 public Value get(Key key) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next;)  
 if (key.equals(x.key)) return (Value) x.val;  
 return null;
 }  
 
 public void put(Key key, Value val) {
 int i = hash(key);
 for (Node x = st[i]; x != null; x = x.next;)  
 if (key.equals(x.key)) {  
 x.val = val;  
 return;  
 }  
 st[i] = new Node(key, val, st[i];
 }

�20

SEPARATE CHAINING

Analysis

▸ Under uniform hashing assumption, length of each chain is  
~� .

▸ Consequence: Number of probes (calls to either equals() or
hashCode()) for search/insert is proportional to � (� times
faster than sequential search).

▸ � too large -> too many empty chains.

▸ � too small -> chains too long.

▸ Typical choice: � ~� -> constant time per operation.

n/m

n/m m

m

m

m 1/4n

�21

SEPARATE CHAINING

Resizing in a separate-chaining hash table

▸ Goal: Average length of chain � = constant
lookup.

▸ Double hash table size when � .

▸ Halve hash table size when � .

▸ Need to rehash all keys when resizing (hash code
does not change, but hash changes).

n/m

n/m ≥ 8

n/m ≤ 2

�22

SEPARATE CHAINING

Deletion in a separate-chaining hash table

▸ Find key in chain and remove it along with its
associated value.

�23

SEPARATE CHAINING

Summary for symbol table operations

�24

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered list)

Binary search
(ordered array)

BST

2-3 search tree

Red-black BSTs

Separate
chaining

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n ?

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

n n n 3 − 5 3 − 5 3 − 5

TODAY’S LECTURE IN A NUTSHELL

Lecture 31-32: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Linear Probing

�25

LINEAR PROBING

Open addressing

▸ Alternate approach to handle collisions.

▸ Maintain keys and values in two parallel arrays.

▸ When a new key collides, find next empty slot and put it there.

▸ If the array is full, the search would not terminate.

�26

LINEAR PROBING

Linear probing

▸ Hash: Map key to integer � between � and � .

▸ Insert: Put at index � if free. If not, try � , � , etc.

▸ Search: Search table index �. If occupied but no match, try � , � , etc

▸ If you find a gap then you know that it does not exist.

▸ Table size � must be greater than the number of key-value pairs �.

i 0 m − 1

i i + 1 i + 2

i i + 1 i + 2

m n

�27

TEXT �28

LINEAR PROBING

Linear probing

�29

LINEAR PROBING

Symbol table with linear probing implementation

public class LinearProbingHashST<Key, Value> {

 private int m = 32768; // hash table size
 private Value[] Vals = (Value[]) new Object[m];  
 private Key[] Vals = (Key[]) new Object[m];
  
 public Value get(Key key) {
 for (int i = hash(key); keys[i] != null; i = (i+1) % m;)  
 if (key.equals(keys[i])) return vals[i];  
 return null;
 }  
 
 public void put(Key key, Value val) {
 int i;
 for (int i = hash(key); keys[i] != null; i = (i+1) % m;)  
 if (key.equals(keys[i])){  
 break;  
 }  
 keys[i] = key;  
 vals[i] = val;
 }

�30

LINEAR PROBING

Clustering

▸ Cluster: a contiguous block of keys.

▸ Observation: new keys likely to hash in middle of big clusters.

�31

LINEAR PROBING

Analysis

▸ Proposition: Under uniform hashing assumption, the average number of probes in a linear-
probing hash table of size � that contains � keys is at most

▸ � for search hits and

▸ � for search misses and insertions.

▸ [Knuth 1963]

▸ Parameters:

▸ � too large -> too many empty array entries.

▸ � too small -> search time becomes too long.

▸ Typical choice: � ~� -> constant time per operation.

m n = αm

1/2(1 +
1

1 − a
)

1/2(1 +
1

(1 − a)2
)

m

m

α = n /m 1/2

�32

LINEAR PROBING

Resizing in a linear probing hash table

▸ Goal: Fullness of array (load factor) � .

▸ Double hash table size when � .

▸ Halve hash table size when � .

▸ Need to rehash all keys when resizing (hash code does not
change, but hash changes).

▸ Deletion not straightforward.

n/m ≤ 1/2

n/m ≥ 1/2

n/m ≤ 1/8

�33

LINEAR PROBING

Summary for symbol table operations

�34

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered list)

Binary search
(ordered array)

BST

2-3 search tree

Red-black BSTs

Separate
chaining

Linear probing

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n ?

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

2 log n 2 log n 2 log n 1 log n 1 log n 1 log n

n n n 3 − 5 3 − 5 3 − 5

n n n 3 − 5 3 − 5 3 − 5

LINEAR PROBING

Separate chaining vs linear probing

▸ Separate chaining:

▸ Performance degrades gracefully as number of keys
increases.

▸ Clustering less sensitive to poorly-designed hash function.

▸ Potentially fewer probes.

▸ Linear probing:

▸ Less wasted space.

▸ Better cache performance (locality).

�35

LINEAR PROBING

Hashing: variations on the theme

▸ Two-probe hashing (separate chaining variant):

▸ Hash to two positions, insert key in shorter of the two chains.

▸ Reduces expected length of longest chain to � .

▸ Double hashing (linear probing variant):

▸ Use linear probing, but skip a variable amount, not just 1 each time you have collision.

▸ Effectively eliminates clustering.

▸ Can allow table to become nearly full.

▸ More difficult to implement delete.

▸ Cuckoo hashing (linear probing variant):

▸ Hash to two positions, insert key into either position. If occupied, reinsert displayed key into its
alternative position and recur.

▸ Constant worst case time for search.

log log n

�36

LINEAR PROBING

Hash tables vs balanced search trees

▸ Hash tables:

▸ Simpler to code.

▸ No effective alternative of unordered keys.

▸ Faster for simple keys (a few arithmetic operations versus � compares).

▸ Balanced search trees:

▸ Stronger performance guarantee.

▸ Support for ordered symbol table operations.

▸ Easier to implement compareTo() than hashCode().

▸ Java includes both:

▸ Balanced search trees: java.util.TreeMap, java.util.TreeSet.

▸ Hash tables: java.util.HashMap, java.util.IdentityHashMap.

log n

�37

TODAY’S LECTURE IN A NUTSHELL

Lecture 31-32: Hash tables

▸ Hash functions

▸ Separate chaining

▸ Linear Probing

�38

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.4 (Pages 458-477)

▸ Website:

▸ https://algs4.cs.princeton.edu/34hash/

�39

Practice Problems:

▸ 3.4.1-3.4.13

https://algs4.cs.princeton.edu/34hash/

