CS062 DATA STRUCTURES AND ADVANCED PROGRAMMING

31-32: Hash tables

Alexandra Papoutsaki Lectures

Mark Kampe Labs

Lecture 31-32: Hash tables

- Hash functions
- Separate chaining
- Linear Probing

Summary for symbol table operations

	Worst case			Average case		
	Search	Insert	Delete	Search	Insert	Delete
Sequential search (unordered	п	п	п	n/2	п	n/2
Binary search (ordered array)	log n	п	п	log n	n/2	n/2
BST	п	п	п	1.39 log <i>n</i>	1.39 log <i>n</i>	?
2-3 search tree	$c \log n$	$c\log n$	$c\log n$	$c \log n$	$c\log n$	$c\log n$
Red-black BSTs	2 log <i>n</i>	2 log <i>n</i>	2 log <i>n</i>	1 log <i>n</i>	1 log <i>n</i>	1 log <i>n</i>

Basic plan for hashing

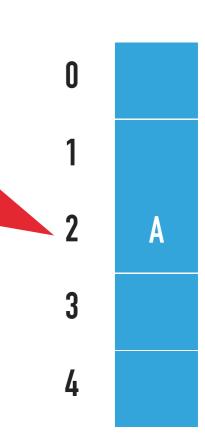
- Save items in a key-indexed table (index is a function of the key).
- Hash function: Method for computing array index from key.

Issues:

- Computing the hash function.
- Method for checking whether two keys are equal.
- How to handle collisions when two keys hash to same index.

Space-time tradeoff:

- If no space limitation: hash function with key as index.
- If no time limitation: collision resolution with sequential search.
- If space and time limitation (real world): hashing



Computing hash function

- Ideal scenario: Take any key and uniformly "scramble" it to produce a symbol table index.
- Requirements:
 - Computing the hash function efficiently.
 - Every symbol table index is equally likely for each key.
- > Although thoroughly researched, still problematic in practical applications.
- **Examples:** Hashing phone numbers or social security numbers.
 - Bad: if we choose the first three digits (area code/geographic region and time).
 - Better: if we choose the last three digits.
- Practical challenge: Need different approach for each key type.

Hashing in Java

- All Java classes inherit a method hashCode(), which returns an integer.
- Requirement: If x.equals(y) then it should be x.hashCode()==y.hashCode().
- Ideally: If !x.equals(y) then it should be x.hashCode()!=y.hashCode().
- Default implementation: Memory address of x.
 - Need to override it for custom types.
 - Already done for us for Integer, Double, etc.

Equality test in Java

- Requirement: For any objects x, y, and z.
 - Reflexive: x.equals(x) is true.
 - Symmetric: x.equals(y) iff y.equals(x).
 - Transitive: if x.equals(y) and y.equals(z) then x.equals(z).
 - Non-null: if x.equals(null) is false.
- If you don't override it the default implementation checks whether x and y refer to the same object in memory.

}

Java implementations of equals() for user-defined types

```
public final class Date {
       private final int month;
       private final int day;
       private final int year;
       public boolean equals(Object y) {
           if (y == this) return true;
           if (y == null) return false;
           if (y.getClass() != this.getClass()) return false;
           Date that = (Date) y;
           return (this.day == that.day &&
                   this.month == that.month &&
                   this.year == that.year);
       }
```

General equality test recipe in Java

- Optimization for reference equality.
 - if (y == this) return true;
- Check against null.
 - if (y == null) return false;
- Check that two objects are of the same type.
 - if (y.getClass() != this.getClass()) return false;
- Cast them.
 - Date that = (Date) y;
- Compare each significant field.
 - return (this.day == that.day && this.month == that.month && this.year == that.year);
 - If a field is a primitive type, use ==.
 - > If a field is an object, use equals().
 - If field is an array of primitives, use Arrays.equals().
 - If field is an area of objects, use Arrays.deepEquals().

Java implementations of hashCode()

```
> public final class Integer {
      private final int value;
      public int hashCode() {
            return (value);
      }
 }
> public final class Boolean {
      private final boolean value;
      public int hashCode() {
            if(value) return 1231;
           else return 1237;
      }
 }
```

Implementing hash code for arrays

► 31x+y rule.

}

- Initialize hash to 1.
- Repeatedly multiply hash by 31 and add next integer in array.

```
> public class Arrays {
```

```
...
public static int hashCode(int[] a) {
    int hash = 1;
    for (int i=0; i<a.length; i++) {
        hash = 31*hash + a[i];
    return hash;
}</pre>
```

Implementing hash code for strings

```
> Treat a string as an array of characters.
```

Initialize hash to 0.

```
> public final class String {
    private final char[] s;
    private int hash = 0;
    ...
    public int hashCode() {
        int h = hash;
        if (h != 0) return h;
        for (int i=0; i< length; i++) {
            h = s[i] + (31 * h);
            hash = h;
            return h;
        }
    }
}</pre>
```

Not foolproof, e.g., both Aa and BB hash to 2112. Actually, 2^n strings of length 2n hash to the same value!

Java implementations of hashCode() for user-defined types

```
public final class Date {
       private final int month;
       private final int day;
       private final int year;
       public int hashCode() {
           int hash = 1;
           hash = 31*hash + ((Integer) month).hashCode();
           hash = 31*hash + ((Integer) day).hashCode();
           hash = 31*hash + ((Integer) year).hashCode();
           return hash;
           //could be also written as
           //return Objects.hash(month, day, year);
       }
  }
```

General hash code recipe in Java

- Combine each significant field using the 31x+y rule.
- Shortcut 1: use Objects.hash() for all fields (except arrays).
- Shortcut 2: use Arrays.hashCode() for primitive arrays.
- Shortcut 3: use Arrays.deepHashCode() for object arrays.

Modular hashing

```
▶ Hash code: an int between -2^{31} and 2^{31} - 1
```

► Hash function: an int between 0 and m - 1, where m is the hash table size (typically a prime number or power of 2).

```
> private int hash (Key key){
    return key.hashCode() % m;
}
```

Bug! Might map to negative number.

```
> private int hash (Key key){
    return Math.abs(key.hashCode()) % m;
}
```

> Very unlikely bug. For a hash code of -2^{31} , Math.abs will return a negative number.

```
> private int hash (Key key){
    return (key.hashCode() & 0x7fffffff) % m;
}
```

Correct.

Uniform hashing assumption

- Uniform hashing assumption: Each key is equally likely to hash to an integer between 0 and m 1.
- Mathematical model: balls & bins. Toss *n* balls uniformly at random into *m* bins.
- Bad news: Expect two balls in the same bin after $\sim \sqrt{(\pi m/2)}$ tosses.
 - Birthday problem: In a random group of 23 or more people, more likely than not that two people will share the same birthday.
- Good news: load balancing
 - When n = m, expect most loaded bin has $-\ln m / \ln \ln n$ balls.
 - When n > m, the number of balls in each bin is "likely close" to n/m.

Lecture 31-32: Hash tables

- Hash functions
- Separate chaining
- Linear Probing

Collisions are unavoidable

- Collision: Two distinct keys hash to the same index.
 - Birthday problem: Can't avoid collisions (unless you have at least quadratic memory).
 - Coupon collector + load balancing: collisions will be evenly distributed.
- Challenge: how to deal with collisions efficiently.

hash("B") = 2 ???

0

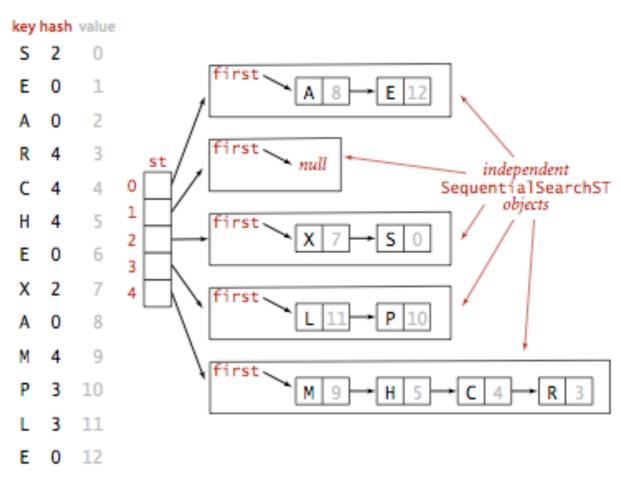
3

4

A

Separate Chaining

- Use an array of m < n distinct lists
 [H.P. Luhn, IBM 1953].
 - Hash: Map key to integer *i* between 0 and m-1.
 - Insert: Put at front of i-th chain (if not already there).
 - Search: Need to only search the i-th chain.



Hashing with separate chaining for standard indexing client

Symbol table with separate chaining implementation

```
public class SeparateChainingLiteHashST<Key, Value> {
   private int m = 128; // hash table size
    private Node[] st = new Node[m];
   // array of linked-list symbol tables. Node is inner class that holds keys and values of type Object
   public Value get(Key key) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next;)
            if (key.equals(x.key)) return (Value) x.val;
        return null;
    }
    public void put(Key key, Value val) {
        int i = hash(key);
        for (Node x = st[i]; x != null; x = x.next;)
            if (key.equals(x.key)) {
                x.val = val;
                return;
        }
        st[i] = new Node(key, val, st[i];
    }
```

Analysis

- Under uniform hashing assumption, length of each chain is $\sim n/m$.
- Consequence: Number of probes (calls to either equals() or hashCode()) for search/insert is proportional to n/m (m times faster than sequential search).
 - *m* too large -> too many empty chains.
 - *m* too small -> chains too long.
 - ▶ Typical choice: *m*~1/4*n* -> constant time per operation.

Resizing in a separate-chaining hash table

- Goal: Average length of chain n/m = constant lookup.
 - Double hash table size when $n/m \ge 8$.
 - Halve hash table size when $n/m \leq 2$.
 - Need to rehash all keys when resizing (hash code does not change, but hash changes).

Deletion in a separate-chaining hash table

Find key in chain and remove it along with its associated value.

Summary for symbol table operations

	Worst case			Average case		
	Search	Insert	Delete	Search	Insert	Delete
Sequential search (unordered list)	п	п	п	n/2	п	n/2
Binary search (ordered array)	log n	п	п	log n	n/2	n/2
BST	п	п	п	1.39 log <i>n</i>	1.39 log <i>n</i>	?
2-3 search tree	$c\log n$	$c \log n$	$c \log n$	$c \log n$	$c\log n$	$c\log n$
Red-black BSTs	2 log <i>n</i>	2 log <i>n</i>	2 log <i>n</i>	1 log <i>n</i>	1 log <i>n</i>	1 log <i>n</i>
Separate chaining	п	п	п	3 – 5	3 – 5	3 – 5

Lecture 31-32: Hash tables

- Hash functions
- Separate chaining
- Linear Probing

Open addressing

- Alternate approach to handle collisions.
- Maintain keys and values in two parallel arrays.
- > When a new key collides, find next empty slot and put it there.
- If the array is full, the search would not terminate.

Linear probing

- Hash: Map key to integer *i* between 0 and m 1.
- Insert: Put at index *i* if free. If not, try i + 1, i + 2, etc.
- Search: Search table index *i*. If occupied but no match, try i + 1, i + 2, etc
 - If you find a gap then you know that it does not exist.
- Table size *m* **must** be greater than the number of key-value pairs *n*.

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

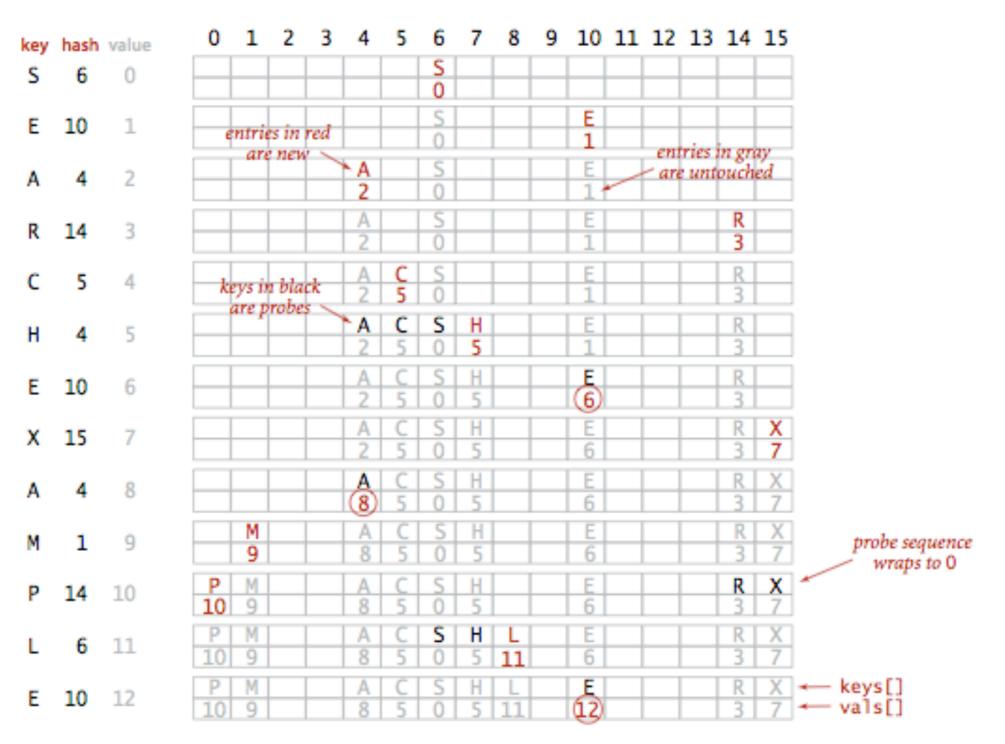
3.4 LINEAR PROBING DEMO

*

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Linear probing



Trace of linear-probing ST implementation for standard indexing client

Symbol table with linear probing implementation

```
public class LinearProbingHashST<Key, Value> {
    private int m = 32768; // hash table size
    private Value[] Vals = (Value[]) new Object[m];
    private Key[] Vals = (Key[]) new Object[m];
    public Value get(Key key) {
        for (int i = hash(key); keys[i] != null; i = (i+1) % m;)
            if (key.equals(keys[i])) return vals[i];
        return null;
    }
    public void put(Key key, Value val) {
        int i;
        for (int i = hash(key); keys[i] != null; i = (i+1) % m;)
            if (key.equals(keys[i])){
                break:
        }
        keys[i] = key;
        vals[i] = val;
    }
```

Clustering

- Cluster: a contiguous block of keys.
- Observation: new keys likely to hash in middle of big clusters.

Analysis

• Proposition: Under uniform hashing assumption, the average number of probes in a linearprobing hash table of size *m* that contains $n = \alpha m$ keys is at most

1/2(1 +
$$\frac{1}{1-a}$$
) for search hits and
1/2(1 + $\frac{1}{(1-a)^2}$) for search misses and insertions.

- [Knuth 1963]
- Parameters:
 - *m* too large -> too many empty array entries.
 - *m* too small -> search time becomes too long.
 - Typical choice: $\alpha = n/m \sim 1/2$ -> constant time per operation.

Resizing in a linear probing hash table

- ▶ Goal: Fullness of array (load factor) $n/m \le 1/2$.
 - Double hash table size when $n/m \ge 1/2$.
 - Halve hash table size when $n/m \le 1/8$.
 - Need to rehash all keys when resizing (hash code does not change, but hash changes).
- Deletion not straightforward.

Summary for symbol table operations

	Worst case			Average case		
	Search	Insert	Delete	Search	Insert	Delete
Sequential search (unordered list)	п	п	n	n/2	п	n/2
Binary search (ordered array)	log n	п	п	log n	n/2	n/2
BST	п	п	п	1.39 log <i>n</i>	1.39 log <i>n</i>	?
2-3 search tree	$c \log n$	$c\log n$	$c\log n$	$c\log n$	$c \log n$	$c \log n$
Red-black BSTs	2 log <i>n</i>	2 log <i>n</i>	2 log <i>n</i>	1 log <i>n</i>	1 log <i>n</i>	1 log <i>n</i>
Separate chaining	п	п	п	3 – 5	3 – 5	3 – 5
Linear probing	п	п	п	3 – 5	3 – 5	3 – 5

Separate chaining vs linear probing

- Separate chaining:
 - Performance degrades gracefully as number of keys increases.
 - Clustering less sensitive to poorly-designed hash function.
 - Potentially fewer probes.
- Linear probing:
 - Less wasted space.
 - Better cache performance (locality).

Hashing: variations on the theme

Two-probe hashing (separate chaining variant):

- Hash to two positions, insert key in shorter of the two chains.
- ▶ Reduces expected length of longest chain to log log *n*.
- Double hashing (linear probing variant):
 - > Use linear probing, but skip a variable amount, not just 1 each time you have collision.
 - Effectively eliminates clustering.
 - Can allow table to become nearly full.
 - More difficult to implement delete.
- Cuckoo hashing (linear probing variant):
 - Hash to two positions, insert key into either position. If occupied, reinsert displayed key into its alternative position and recur.
 - Constant worst case time for search.

Hash tables vs balanced search trees

Hash tables:

- Simpler to code.
- No effective alternative of unordered keys.
- Faster for simple keys (a few arithmetic operations versus log *n* compares).

Balanced search trees:

- Stronger performance guarantee.
- Support for ordered symbol table operations.
- Easier to implement compareTo() than hashCode().

Java includes both:

- Balanced search trees: java.util.TreeMap, java.util.TreeSet.
- Hash tables: java.util.HashMap, java.util.IdentityHashMap.

Lecture 31-32: Hash tables

- Hash functions
- Separate chaining
- Linear Probing

Readings:

- Textbook: Chapter 3.4 (Pages 458-477)
- Website:
 - https://algs4.cs.princeton.edu/34hash/

Practice Problems:

> 3.4.1-3.4.13