
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

3: Inheritance and Interfaces

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

FUNDAMENTALS

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance and Interfaces

▸ Inheritance

▸ Interfaces

�2

Some slides adopted from Algorithms, 4th Edition and Oracle tutorials

INHERITANCE

Inheritance

▸ When you want to create a new class and there is already a class that
includes some of the code that you want, you can derive your new class from
the existing class. → reuse code!

▸ Central concept in OOP.

▸ A class that is derived from another is called a subclass or child class.

▸ The class from which the subclass is derived is called a superclass or parent
class.

▸ Single inheritance: A class can only extend ONE AND ONLY one parent class.

▸ Multilevel inheritance: A class can extend a class which extends another class
etc.

�3

INHERITANCE

Remember our Bicycle class?

/**
 * Represents a bicycle
 * @author https://docs.oracle.com/javase/tutorial/java/concepts/class.html
 *
 */
public class Bicycle {

 //instance variables
 private int cadence = 0;
 private int speed = 0;
 private int gear = 1;

 // the Bicycle class has one constructor
 public Bicycle(int startCadence, int startSpeed, int startGear) {
 gear = startGear;
 cadence = startCadence;
 speed = startSpeed;
 }

 public void changeCadence(int newValue) {
 cadence = newValue;
 }

 public void changeGear(int newValue) {
 gear = newValue;
 }

 public void changeSpeed(int change) {
 speed = speed + change;
 }

 public int getCadence() {
 return cadence;
 }

 public void printGear() {
 System.out.println("Gear:" + gear);
 }

 public String toString() {
 return "cadence:" + cadence + " speed:" + speed + " gear:" + gear;
 }
}

�4

INHERITANCE

A MountainBike is specialized type of Bicycle

/**
 * Demonstrates concept of inheritance
 * @author https://docs.oracle.com/javase/tutorial/java/IandI/subclasses.html
 *
 */
public class MountainBike extends Bicycle {

 // the MountainBike subclass adds one field
 public int seatHeight;

 // the MountainBike subclass has one constructor
 public MountainBike(int startHeight,
 int startCadence,
 int startSpeed,
 int startGear) {
 super(startCadence, startSpeed, startGear);
 seatHeight = startHeight;
 }

 // the MountainBike subclass adds one method
 public void setHeight(int newValue) {
 seatHeight = newValue;
 }
}

�5

INHERITANCE

Inheritance

‣ The subclass inherits all the public and protected members.

‣ The inherited fields can be used directly, just like any other fields.

‣ You can declare a field in the subclass with the same name as one in the
superclass, thus hiding it.

‣ AVOID
‣ You can write a new instance method in the subclass that has the same signature

as the one in the superclass, thus overriding it.

‣ You can write a new static method in the subclass that has the same signature as
the one in the superclass, thus hiding it.

‣ You can write a subclass constructor that invokes either implicitly the default
constructor of the superclass or by directly invoking it using the keyword super().

�6

INHERITANCE

Polymorphism

‣ The ability of an object to take many forms.

‣ Static Polymorphism: Happens during method overloading, that is more than one method
have the same name but different signatures.

‣ Also known as Compile-Time Polymorphism, Static binding, Compile-Time binding, Early
binding

‣ Dynamic Polymorphism: Happens during method overriding, that is a method with the same
signature exists both in parent and child class. When a parent reference is used to refer to a
child object, the method that will be executed with be defined at run-time, therefore will be
the child’s overridden method.

‣ Student student = new Student();  
Person person = new Student();

‣ Also known as Run-Time Polymorphism, Dynamic binding, Run-Time binding, Late binding

�7

https://medium.com/@shanikae/polymorphism-explained-simply-7294c8deeef7

https://medium.com/@shanikae/polymorphism-explained-simply-7294c8deeef7

INHERITANCE

Example: Animal

public class Animal {
 public int legs = 2;
 public static String species = "Animal";
 public static void testClassMethod() {
 System.out.println("The static method in Animal");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Animal");
 }
}

�8

INHERITANCE

Example: Cat

public class Cat extends Animal {
 public int legs = 4;
 public static String species = "Cat";
 public static void testClassMethod() {
 System.out.println("The static method in Cat");
 }
 public void testInstanceMethod() {
 System.out.println("The instance method in Cat");
 }
}  

�9

INHERITANCE

Hiding vs overriding

public static void main(String[] args) {
 Cat myCat = new Cat();
 myCat.testClassMethod(); //invoking a hidden method
 myCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(myCat.legs); //accessing a hidden field
 System.out.println(myCat.species); //accessing a hidden field
}

‣ Output:

The static method in Cat
The instance method in Cat
4
Cat

WHAT YOU WERE EXPECTING, RIGHT?

�10

INHERITANCE

Hiding vs overriding

public static void main(String[] args) {
 Animal yourCat = new Cat();
 yourCat.testClassMethod(); //invoking a hidden method
 yourCat.testInstanceMethod(); //invoking an overridden method
 System.out.println(yourCat.legs); //accessing a hidden field  
 System.out.println(yourCat.species); //accessing a hidden field
}

‣ Output:

The static method in Animal
The instance method in Cat
2
Animal

???

�11

INHERITANCE

Hiding vs overriding

‣ Hiding: For fields (instance+static) and methods (static) the class
is determined at compile-time. Here, the compiler sees that
yourCat is declared as Animal.

‣ Overriding: For instance methods this is determined at run-time.
At this point, we know that yourCat is of type Cat.

‣ One form of polymorphism (dynamic) .

‣ You will get a compile-time error if you attempt to change an
instance method in the superclass to an static method in the
subclass and vice-versa.

�12

INHERITANCE

super keyword

‣ Refers to the direct parent of the subclass.

‣ super.variable: for hidden fields, avoid altogether.

‣ super.instanceMethod(): for overridden methods.

‣ super(args): to call the constructor of the super class.
First line in constructor of subclass.

�13

INHERITANCE

All classes inherit class Object

‣ Directly if they do not extend any other class, or indirectly as descendants.

‣ Object class has built-in methods that are inherited.

‣ public boolean equals (Object other)

‣ Default behavior returns true only if same object.

‣ public String toString()

‣ Returns string representation of object – default is hexadecimal.

‣ Does not print the string.

‣ Typically needs to be overridden to be useful.

‣ public int hashCode()

‣ Unique identifier defined so that if a.equals(b) then a, b have same hashCode.

‣

�14

INHERITANCE

final keyword

‣ Variable: only assigned once in its declaration or in
constructor — its value cannot be changed after
initialization.

‣ E.g., static final PI = 3.14;

‣ Method: cannot be overridden by subclass.

‣ Class: cannot be extended.

�15

INHERITANCE

Nested classes

‣ Java allows us to define a class (nested) within another class
(outer).

class OuterClass {  
 class NestedClass {  
 }  
}

‣ Nested classes are divided into two categories: static nested class
and non-static which are called inner classes.

class OuterClass {  
 static class StaticNestedClass {  
 }  
 class InnerClass {  
 }  
}

�16

INHERITANCE

Example

/**
 * Demonstrates concept of inner class
 * @author https://docs.oracle.com/javase/tutorial/java/javaOO/examples/DataStructure.java
 *
 */

public class DataStructure {

 private final static int SIZE = 15;
 private int[] arrayOfInts = new int[SIZE];

 public DataStructure() {
 for (int i = 0; i < SIZE; i++) {
 arrayOfInts[i] = i;
 }
 }

 public void printEven() {
 DataStructureIterator iterator = this.new EvenIterator();
 while (iterator.hasNext()) {
 System.out.print(iterator.next() + " ");
 }
 }

 interface DataStructureIterator extends java.util.Iterator<Integer> { }

 // Inner class implements the DataStructureIterator interface, which extends the Iterator<Integer> interface
 private class EvenIterator implements DataStructureIterator {

 private int nextIndex = 0;

 public boolean hasNext() {
 return (nextIndex <= SIZE - 1);
 }

 public Integer next() {
 Integer retValue = Integer.valueOf(arrayOfInts[nextIndex]);
 nextIndex += 2;
 return retValue;
 }
 }

 public static void main(String s[]) {
 DataStructure ds = new DataStructure();
 ds.printEven();
 }
}

�17

INHERITANCE

Practice Time

public class ClassA {
 public void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public static void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

public class ClassB extends ClassA {
 public static void methodOne(int i) {
 }
 public void methodTwo(int i) {
 }
 public void methodThree(int i) {
 }
 public static void methodFour(int i) {
 }
}

1. Which method overrides a method in the superclass?

2. Which method hides a method in the superclass?

3. What do the other methods do?

�18

INHERITANCE

Answers

1. methodTwo.

2. methodFour.

3. They cause compile-time errors.  
methodOne: “This static method cannot hide the instance method from ClassA”.  
methodThree: “This instance method cannot override the static method from
ClassA”.

�19

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance and Interfaces

▸ Inheritance

▸ Interfaces

�20

INTERFACES

Interfaces

▸ Contracts of what a class must do, not how to do it, abstracting from
implementation.

▸ Central concept in OOP.

▸ In Java, an interface is a reference type (like a class), that contains only
constants, method signatures, default methods, and static methods.

▸ A class that implements an interface is obliged to implement its methods.

▸ Method bodies exist only for default methods and static methods.

▸ Interfaces cannot be instantiated (no new keyword). They can only be
implemented by classes or extended by other interfaces.

�21

INTERFACES

Example

public interface Moveable{
 int turn(Direction direction, double radius, double speed);

 default int stop(){
 speed=0;
 }
}

public class Car implements Moveable{
 int turn(Direction direction, double radius, double speed){
 //code goes here  
 }  
}

public class Bicycle implements Moveable{
 int turn(Direction direction, double radius, double speed){
 //code goes here  
 }  
}

�22

INTERFACES

Interfaces

▸ A class can implement multiple interfaces.

▸ class A implements Interface1, Interface2{…}

▸ An interface can extend multiple interfaces.

▸ public interface GroupedInterface extends
Interface1,Interface2{…}

�23

TODAY’S LECTURE IN A NUTSHELL

Lecture 3: Inheritance and Interfaces

▸ Inheritance

▸ Interfaces

�24

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ Interfaces and Inheritance: https://docs.oracle.com/javase/tutorial/java/IandI/index.html

▸ Textbook:

▸ Chapter 1.2 (Pages 100-104)

�25

Practice Problems:

▸ If you want more practice with hiding vs overriding:  
http://javabypatel.blogspot.com/2016/04/java-interview-questions.html

https://docs.oracle.com/javase/tutorial/java/IandI/index.html
http://javabypatel.blogspot.com/2016/04/java-interview-questions.html

