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▸ Search 
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Some slides adopted from Algorithms 4th Edition or COS226



2-3 SEARCH TREES

The story so far

▸ The symbol table is a fundamental data type.  

▸ Naive implementations (arrays/linked lists sorted or 
unsorted) are way too slow. 

▸ Binary search trees work well in the average case, but can 
grow too tall and imbalanced in the worst case. 

▸ Question of the day: How to balance search trees?
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2-3 SEARCH TREES

Order of growth for symbol table operations
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2-3 SEARCH TREES

2-3 tree
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▸ Definition: A 2-3 tree is either empty or a 

▸ 2-node: one key (and associated value) and two links, a left to a 2-3 
search tree with smaller keys, and a right to a 2-3 search tree with larger 
keys (similarly to standard BSTs), or a 

▸ 3-node: two keys (and associated values) and three links, a left to a 2-3 
search tree with smaller keys, a middle to a 2-3 search tree with keys 
between the node’s keys, and a right to a 2-3 search tree with larger keys. 

▸ Symmetric order: Inorder traversal yields keys in ascending order. 

▸ Perfect balance: Every path from root to null link (empty tree) has the same 
length.



2-3 SEARCH TREES

Example of a 2-3 tree
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▸ 2-node, business as usual with BSTs. 

▸ (e.g.,  EJ are smaller than M and R is larger than M). 

▸ In 3-node,  

▸ left link points to 2-3 search tree with smaller keys than first key, 

▸ (e.g., AC are smaller than E.) 

▸ middle link points to 2-3 search tree with keys between first and 
second key, 

▸ (e.g. H is between E and J.) 

▸ right link points to 2-3 search tree with keys larger than second 
key. 

▸ (e.g, L is larger than J).
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SEARCH

How to search for a key
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▸ Compare search key against (every) key in node. 

▸ Find interval containing search key (left, potentially middle, or right). 

▸ Follow associated link, recursively.



�9



TODAY’S LECTURE IN A NUTSHELL

Lecture 27: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance

�10



INSERTION

How to insert into a 2-node
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▸ Add new key to 2-node to create a 3-node.
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INSERTION

How to insert into a tree consisting of a single 3-node
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▸ Add new key to 3-node to create a 
temporary 4-node. 

▸ Move middle key in 4-node into 
parent. 

▸ Split 4-node into two 2-nodes. 

▸ Height went up by 1.



INSERTION

How to insert into a 3-node whose parent is a 2-node
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▸ Add new key to 3-node to create a 
temporary 4-node. 

▸ Split 4-node into two 2-nodes and 
pass middle key to parent. 

▸ Replace 2-node parent with 3-node.



INSERTION

How to insert into a 3-node whose parent is a 3-node
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▸ Add new key to 3-node to create a 
temporary 4-node. 

▸ Split 4-node into two 2-nodes and 
pass middle key to parent creating a 
temporary 4-node. 

▸ Split 4-node into two 2-nodes and 
pass middle key to parent. 

▸ Repeat up the tree, as necessary.



INSERTION

Splitting the root
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▸ If end up with a temporary 4-node 
root, split into three 2-nodes. 

▸ Increases height by 1 but perfect 
balance is preserved.
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CONSTRUCTION

Practice Time
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▸ Draw the 2-3 tree that results when you insert the keys: 
E A S Y Q U T I O N in that order in an initially empty tree.



CONSTRUCTION

Answer
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▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html
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PERFORMANCE

Height of 2-3 search trees
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▸ Worst case: �  (all 2-nodes). 

▸ Best case: �  (all 3-nodes)  

▸ That means that storing a million nodes will lead to a tree with height between 
12 and 20, and storing a billion nodes to a tree with height between 18 and 
30 (not bad!). 

▸  Search and insert are � ! 

▸ But implementation is a pain and the overhead incurred could make the 
algorithms slower than standard BST search and insert.  

▸ We did provide insurance against a worst case but we would prefer the overhead 
cost for that insurance to be low. Stay tuned!

log n

log3 n = 0.631 log n

O(log n)



PERFORMANCE

Summary for symbol table operations

�24

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential 
search 

(unordered 
Binary search 

(ordered 
array)

BST

2-3 search 
tree

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n ?

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n



TODAY’S LECTURE IN A NUTSHELL

Lecture 27: 2-3 Search Trees

▸ 2-3 Search Trees 

▸ Search 

▸ Insertion 

▸ Construction 

▸ Performance

�25



ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 424-431) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/33balanced/
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Practice Problems:

▸ 3.3.2-3.3.5

https://algs4.cs.princeton.edu/33balanced/

