
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

27: 2-3 Search Trees

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SEARCHING

TODAY’S LECTURE IN A NUTSHELL

Lecture 27: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

�2

Some slides adopted from Algorithms 4th Edition or COS226

2-3 SEARCH TREES

The story so far

▸ The symbol table is a fundamental data type.

▸ Naive implementations (arrays/linked lists sorted or
unsorted) are way too slow.

▸ Binary search trees work well in the average case, but can
grow too tall and imbalanced in the worst case.

▸ Question of the day: How to balance search trees?

�3

2-3 SEARCH TREES

Order of growth for symbol table operations

�4

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered
Binary search

(ordered
array)

BST

Goal

n n n n n n

n n n nlog n log n

n n n log n log n n

log n log n log nlog nlog nlog n

2-3 SEARCH TREES

2-3 tree

�5

▸ Definition: A 2-3 tree is either empty or a

▸ 2-node: one key (and associated value) and two links, a left to a 2-3
search tree with smaller keys, and a right to a 2-3 search tree with larger
keys (similarly to standard BSTs), or a

▸ 3-node: two keys (and associated values) and three links, a left to a 2-3
search tree with smaller keys, a middle to a 2-3 search tree with keys
between the node’s keys, and a right to a 2-3 search tree with larger keys.

▸ Symmetric order: Inorder traversal yields keys in ascending order.

▸ Perfect balance: Every path from root to null link (empty tree) has the same
length.

2-3 SEARCH TREES

Example of a 2-3 tree

�6

▸ 2-node, business as usual with BSTs.

▸ (e.g., EJ are smaller than M and R is larger than M).

▸ In 3-node,

▸ left link points to 2-3 search tree with smaller keys than first key,

▸ (e.g., AC are smaller than E.)

▸ middle link points to 2-3 search tree with keys between first and
second key,

▸ (e.g. H is between E and J.)

▸ right link points to 2-3 search tree with keys larger than second
key.

▸ (e.g, L is larger than J).

TODAY’S LECTURE IN A NUTSHELL

Lecture 27: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

�7

SEARCH

How to search for a key

�8

▸ Compare search key against (every) key in node.

▸ Find interval containing search key (left, potentially middle, or right).

▸ Follow associated link, recursively.

�9

TODAY’S LECTURE IN A NUTSHELL

Lecture 27: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

�10

INSERTION

How to insert into a 2-node

�11

▸ Add new key to 2-node to create a 3-node.

�12

INSERTION

How to insert into a tree consisting of a single 3-node

�13

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Move middle key in 4-node into
parent.

▸ Split 4-node into two 2-nodes.

▸ Height went up by 1.

INSERTION

How to insert into a 3-node whose parent is a 2-node

�14

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Replace 2-node parent with 3-node.

INSERTION

How to insert into a 3-node whose parent is a 3-node

�15

▸ Add new key to 3-node to create a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent creating a
temporary 4-node.

▸ Split 4-node into two 2-nodes and
pass middle key to parent.

▸ Repeat up the tree, as necessary.

INSERTION

Splitting the root

�16

▸ If end up with a temporary 4-node
root, split into three 2-nodes.

▸ Increases height by 1 but perfect
balance is preserved.

�17

TODAY’S LECTURE IN A NUTSHELL

Lecture 27: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

�18

�19

CONSTRUCTION

Practice Time

�20

▸ Draw the 2-3 tree that results when you insert the keys: 
E A S Y Q U T I O N in that order in an initially empty tree.

CONSTRUCTION

Answer

�21

▸ E A S Y Q U T I O N

https://www.cs.usfca.edu/~galles/visualization/BTree.html

https://www.cs.usfca.edu/~galles/visualization/BTree.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 27: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

�22

PERFORMANCE

Height of 2-3 search trees

�23

▸ Worst case: � (all 2-nodes).

▸ Best case: � (all 3-nodes)

▸ That means that storing a million nodes will lead to a tree with height between
12 and 20, and storing a billion nodes to a tree with height between 18 and
30 (not bad!).

▸ Search and insert are � !

▸ But implementation is a pain and the overhead incurred could make the
algorithms slower than standard BST search and insert.

▸ We did provide insurance against a worst case but we would prefer the overhead
cost for that insurance to be low. Stay tuned!

log n

log3 n = 0.631 log n

O(log n)

PERFORMANCE

Summary for symbol table operations

�24

Worst case Average case

Search Insert Delete Search Insert Delete

Sequential
search

(unordered
Binary search

(ordered
array)

BST

2-3 search
tree

n n n n /2 n n /2

n n n /2log n log n

n n n 1.39 log n ?

c log n

n /2

1.39 log n

c log n c log n c log n c log n c log n

TODAY’S LECTURE IN A NUTSHELL

Lecture 27: 2-3 Search Trees

▸ 2-3 Search Trees

▸ Search

▸ Insertion

▸ Construction

▸ Performance

�25

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.3 (Pages 424-431)

▸ Website:

▸ https://algs4.cs.princeton.edu/33balanced/

�26

Practice Problems:

▸ 3.3.2-3.3.5

https://algs4.cs.princeton.edu/33balanced/

