35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

29-26: Binary Search Trees

v y ‘v:“::"fg
V4 A\ N
s F= P

" 4% \ Alexandra Papoutsaki =
| ABS

Y 7 Lecrures

TODAY'S LECTURE IN A NUTSHELL

Lecture 25-26: Binary Search Trees

» Binary Search Trees
» Ordered Operations

» Deletion in BSTs

Some slides adopted from Algorithms 4th Edition or COS226

parent of Aand R

BINARY SEARCH TREES left link
0 2 T value
@ Q associated
with R

of E
! X

3

Definitions

keys smaller than € keys larger than E

» Binary Search Tree: A binary tree in symmetric order.

» Symmetric order: Each node has a key, and every node’s
key is:

» Larger than all keys in its left subtree.
» Smaller than all keys in its right subtree.

» Our textbook uses BSTs to implement symbol tables,
therefore each node holds a key-value pair. Other
implementations (like today’s lab) hold only a key.

BINARY SEARCH TREES

Differences between heaps and BSTs

Supported operations

Heap

Insert, delete max

BST

insert, search, delete,
ordered operations

What is inserted

Keys

Key-value pairs

Underlying data structure

(Resizing) array

Linked nodes

Tree shape

Complete binary tree

Depends on data

Ordering of keys

Heap-ordered

Symmetrically-ordered

Duplicate keys allowed?

*: depends on implementation.

Yes

No*

BINARY SEARCH TREES 5

BST representation

» We will use an inner class Node that is composed by:
» AKey that is comparable and a Value

» A reference to the root nodes of the left (smaller keys)
and right (larger keys) subtrees.

» Potentially, the total number of nodes in the subtree that
has root this node.

» A BST has a reference to a Node root.

BINARY SEARCH TREES

Node representation

private class Node {

private Key key; // sorted by key

private Value val; // associated data

private Node left, right; // left and right subtrees
private int size; // number of nodes 1n subtree

public Node(Key key, Value val, int size) {
this.key = key;

this.val = val;

this.s1ze = size;

A l g() Il th IMS ROBERT SEDGEWICK | KEVIN WAYNE

3.2 BINARY SEARCH TREE DEMO

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

BINARY SEARCH TREES 8

Search

» If less go left.
» If greater go right.
» If equal, search hit.

» Return value corresponding to given key, or null if no such key.

» In other implementations, you return the last node you
reached.

» Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

Search example

successful search for R unsuccessful searchfor T

R 1s less than S

so look to the left T is greater than S

black nodes could so look to the right

match the search key

®R =R

gray nodes cannot 0 | \
R is greater than E match the search key Vo T is less tharn X
so look to the right so look to the left

link is null
so T is not 1n tree

(search miss)

®\ found R
(search hit)
so return value

Successful (left) and unsuccessful (right) search in a BST

BINARY SEARCH TREES

Search - iterative implementation

» public Value get(Key key) {
Node x = root;
while (x !'= null) {
int cmp = key.compareTo(x.key);
1f (cmp < 0)
X = X.left;
else 1if (cmp > 0)
X = X.right;
else i1f (cmp == 0)
return x.val;

¥

return null;

10

BINARY SEARCH TREES

Search - recursive implementation

» public Value get(Key key) {
return get(root, key);

¥

» private Value get(Node x, Key key) {
1f (X == null)
return null;
int cmp = key.compareTo(x.key);
if (cmp < @)
return get(x.left, key);
else if (cmp > @)
return get(x.right, key);
else
return x.val;

11

BINARY SEARCH TREES

Insert

4

4

4

4

4

If less go left.

If greater go right.

If null, insert.

If already exists, update value.

Number of compares is equal to the depth of the node + 1.

12

BINARY SEARCH TREES

13

Insert example

inserting L

search for L ends L ’
at this null link \

reset links and
increment counts -
on the way up

Insertion into a BST

BINARY SEARCH TREES

Insert

» public void put(Key key, Value val) {
root = put(root, key, val);
¥
private Node put(Node x, Key key, Value val) {
1f (X == null)
return new Node(key, val, 1);
int cmp = key.compareTo(x.key);
1f (cmp < 0)
x.left = put(x.left, key, val);
else 1f (cmp > @)
x.right = put(x.right, key, val);
else
x.val = val;
x.s1ze = 1 + size(x.left) + size(x.right);
return Xx;

14

BINARY SEARCH TREES 15
Tree shape

» The same set of keys can result to different BSTs based on
their order of insertion.

» Number of compares for search/insert is equal to depth of
node +1.

typical case

best case 0
Cl (S)
(A) (B} (R)(X)

worst case

BINARY SEARCH TREES 16

BSTs mathematical analysis

» If n distinct keys are inserted into a BST in random order, the

expected number of compares of search/insertis 2Inn (or
1.391og n).

» If n distinct keys are inserted into a BST in random order, the

expected height of treeis4.3111nn
[Reed, 2003].

» Worst case height is n but highly unlikely.

» Keys would have to come (reversely) sorted!

BINARY SEARCH TREES 17

Correspondence between BSTs and quicksort partitioning

» If array has no duplicate keys 1-1 correspondence.

» In quicksort, pivot separates array in elements that are smaller in
its left subarray and larger in its right subarray.

» In BST, root separates tree in elements that are smaller in its left
subtree and larger in its right subtree.

» This is why the mathematical analysis for BSTs was the same
with quicksort’s partitioning (the expected number of compares

of search/insert is 2 Inn as is the number of compares in
quicksort).

TODAY'S LECTURE IN A NUTSHELL

18

Lecture 25-26: Binary Search Trees

» Binary Search Trees
» Ordered Operations

» Deletion in BSTs

ORDERED OPERATIONS

Minimum and maximum

19

» Minimum: go all the way left until you find a node with no left

child.

» Maximum: go all the way to the right until you find a node with no

right child.

public Key min() {
return min(Croot).key;

h

private Node min(Node x) {
1f (x.left == null)
return X;
else
return min(x.left);

parent O{f AandR kc}.

left link 3
ofe ——~——_ (E)
Q 2 T~ value
C) (H) associated
with R
‘4 »

keys smaller than € keys larger than E

ORDERED OPERATIONS

Floor

» Floor: Largest key in BST <= query key k.
» Case 1: [k equals the key in node]

» Floor of kiis k.
» Case 2: [kis less than key in node]

» Floor of kis in left subtree.

» Case 3: [kis greater than key in node]

20

finding floor(C)

G 1s less than S so
m floor (G) rmust be
on the left

G 1s greater than E so
floor(G) could be
on the right

®

» Floor of kis in right subtree if there is any key <=k in /

right subtree.
» Else, floor is the key in node.

» Same idea for ceiling (smallest key in BST>=query key)

yal
floor(GC)in left
subtreeis nul

®

!

result

ORDERED OPERATIONS

Floor

" public Key floor(Key key) {
Node x = floor(root, key);
1f (x == null)

return null;
else
return x.key;

}

* private Node floor(Node x, Key key) {
if (x == null)
return null;
int cmp = key.compareTo(x.key);

1f (cmp == 0)
return Xx;
1f (cmp < 0)

return floor(x.left, key);
Node t = floor(x.right, key);
if (t !'= null)
return t;
else
return Xx;

21

finding floor(C)

G 1s less than S so
m floor (G) must be
on the left

G 1s greater than E so
floor(G) could be
on the right

®

/
el
floor(C)in left
subtreeis nul

®

t

result

ORDERED OPERATIONS 22
Rank

» Rank: How many keys < query key k.

node count N
» k<key: Recur on left subtree.

» k == key: Everything in left subtree.

» k > key: Everything in left subtree + 1
+ recur on right.

ORDERED OPERATIONS

Rank

» Rank: How many keys < query key k.

public int rank(Key key) {
return rank(key, root);
h

// Number of keys in the subtree less than key.
private int rank(Key key, Node x) {
1f (X == null)
return 0;
int cmp = key.compareTo(x.key);
if Ccmp < 0)
return rank(Ckey, x.left);
else 1f Ccmp > 0)
return 1 + size(x.left) + rank(Ckey, x.right);
else
return size(x.left);

23

ORDERED OPERATIONS

Order of growth for ordered symbol table operations

Sequential search Binary search BST
search n log n h
insert n n h
min/max n 1 h
floor/ceiling n logn h
rank n]Og n h
select n 1 h

» Worst case search and insert are O(n) for BSTs. Not great!

TODAY'S LECTURE IN A NUTSHELL

25

Lecture 25-26: Binary Search Trees

» Binary Search Trees
» Ordered Operations

» Deletion in BSTs

DELETION IN BST

Delete minimum key

» Go left until finding a node with null left subtree.
» Replace the link to that node with its right subtree.

» Update subtree counts.

public void deleteMin() {
root = deleteMin(root);

}

private Node deleteMin(Node x) {
1f (x.left == null)
return x.right;
x.left = deleteMin(x.left);
x.sl1ze = size(x.left) + size(x.right) + 1;
return Xx;

}
» Symmetric for delete maximum

26
go left until (S)
reaching nu\!!/:—-}/\ -
h’f{ link —
\P
™

return that |

|
node’s right h'r.'kl,—\}/\ =
>/
|

available for
garbage collection

update links and node counts
after recursive calls

1\ - 7
| X T
'\ \ _./'
‘|| |/ —\}/\
1)~_

Deleting the minimum in a BST

DELETION IN BST

Hibbard deletion: Delete node which is a leaf

» Delete node by setting parent link to null.

» Example: delete 52 locates a node which is a leaf.

27

DELETION IN BST

Hibbard deletion: Delete node with one child

» Delete node by replacing parent link.

» Example: delete 70 locates a node which has one child.

28

DELETION IN BST

Hibbard deletion: Delete node with two children

» Delete node and replace it with successor (node with smallest of the larger keys)

» Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

29

https://visualgo.net/en/bst

DELETION IN BST

public void delete(Key key) {
root = delete(root, key);

}

private Node delete(Node x, Key key) {
1f (X == null) return null;

int cmp = key.compareTo(x.key);
1f (cmp < 0)
x.left = delete(x.left, key);
else if (cmp > 0)
x.right = delete(x.right, key);
else {
1f (x.right == null)
return x.left;
1f (x.left == null)
return x.right;
Node t = x; //replace with successor
X = min(t.right);
x.right = deleteMin(t.right);
x.left = t.left;
ks
Xx.s1ze = size(x.left) + size(x.right) + 1;
return Xx;

DELETION IN BST 31

Hibbard deletion

» Unsatisfactory solution. If we were to perform many insertions and
deletions the BST ends up being not symmetric and skewed to the left.

» The costis \/Z (extremely complicated analysis).

» No one has proven that alternating between predecessor and successor

will fix this.

» Hibbard devised the algorithm in 1962. Still no algorithm for efficient
deletion in BST.

» Overall, BSTs can have O(n) worst-case for search, insert, and delete. We
want to do better (see future lectures).

TODAY'S LECTURE IN A NUTSHELL

32

Lecture 25-26: Binary Search Trees

» Binary Search Trees
» Ordered Operations

» Deletion in BSTs

ASSIGNED READINGS AND PRACTICE PROBLEMS

33

Readings:

» Textbook: Chapter 3.2 (Pages 396-414)
» Website:

» https://algs4.cs.princeton.edu/32bst/

Practice Problems:

» 3.2.1-3.2.13

https://algs4.cs.princeton.edu/32bst/

