
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

25-26: Binary Search Trees

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SEARCHING

TODAY’S LECTURE IN A NUTSHELL

Lecture 25-26: Binary Search Trees

▸ Binary Search Trees

▸ Ordered Operations

▸ Deletion in BSTs

�2

Some slides adopted from Algorithms 4th Edition or COS226

BINARY SEARCH TREES

Definitions

▸ Binary Search Tree: A binary tree in symmetric order.

▸ Symmetric order: Each node has a key, and every node’s
key is:

▸ Larger than all keys in its left subtree.

▸ Smaller than all keys in its right subtree.

▸ Our textbook uses BSTs to implement symbol tables,
therefore each node holds a key-value pair. Other
implementations (like today’s lab) hold only a key.

�3

BINARY SEARCH TREES

Differences between heaps and BSTs

*: depends on implementation.

�4

Heap BST

Supported operations Insert, delete max insert, search, delete,
ordered operations

What is inserted Keys Key-value pairs

Underlying data structure (Resizing) array Linked nodes

Tree shape Complete binary tree Depends on data

Ordering of keys Heap-ordered Symmetrically-ordered

Duplicate keys allowed? Yes No*

BINARY SEARCH TREES

BST representation

�5

▸ We will use an inner class Node that is composed by:

▸ A Key that is comparable and a Value

▸ A reference to the root nodes of the left (smaller keys)
and right (larger keys) subtrees.

▸ Potentially, the total number of nodes in the subtree that
has root this node.

▸ A BST has a reference to a Node root.

BINARY SEARCH TREES

Node representation

�6

 private class Node {
 private Key key; // sorted by key
 private Value val; // associated data
 private Node left, right; // left and right subtrees
 private int size; // number of nodes in subtree

 public Node(Key key, Value val, int size) {
 this.key = key;
 this.val = val;
 this.size = size;
 }
 }

�7

BINARY SEARCH TREES

Search

�8

▸ If less go left.

▸ If greater go right.

▸ If equal, search hit.

▸ Return value corresponding to given key, or null if no such key.

▸ In other implementations, you return the last node you
reached.

▸ Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

Search example

�9

BINARY SEARCH TREES

Search - iterative implementation

�10

▸ public Value get(Key key) {  
 Node x = root;  
 while (x != null) {  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 x = x.left;  
 else if (cmp > 0)  
 x = x.right;  
 else if (cmp == 0)  
 return x.val;  
 }  
 return null;  
}

BINARY SEARCH TREES

Search - recursive implementation

�11

‣ public Value get(Key key) {  
 return get(root, key);  
}

‣ private Value get(Node x, Key key) {  
 if (x == null)  
 return null;  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 return get(x.left, key);  
 else if (cmp > 0)  
 return get(x.right, key);  
 else  
 return x.val;  
}

BINARY SEARCH TREES

Insert

�12

▸ If less go left.

▸ If greater go right.

▸ If null, insert.

▸ If already exists, update value.

▸ Number of compares is equal to the depth of the node + 1.

BINARY SEARCH TREES

Insert example

�13

BINARY SEARCH TREES

Insert

�14

▸ public void put(Key key, Value val) {  
 root = put(root, key, val);  
}  
private Node put(Node x, Key key, Value val) {  
 if (x == null)  
 return new Node(key, val, 1);  
 int cmp = key.compareTo(x.key);  
 if (cmp < 0)  
 x.left = put(x.left, key, val);  
 else if (cmp > 0)  
 x.right = put(x.right, key, val);  
 else  
 x.val = val;  
 x.size = 1 + size(x.left) + size(x.right);  
 return x;  
}

BINARY SEARCH TREES

Tree shape

�15

▸ The same set of keys can result to different BSTs based on
their order of insertion.

▸ Number of compares for search/insert is equal to depth of
node +1.

BINARY SEARCH TREES

BSTs mathematical analysis

�16

▸ If � distinct keys are inserted into a BST in random order, the
expected number of compares of search/insert is � (or
�).

▸ If � distinct keys are inserted into a BST in random order, the
expected height of tree is �  
[Reed, 2003].

▸ Worst case height is � but highly unlikely.

▸ Keys would have to come (reversely) sorted!

n
2 ln n

1.39 log n

n
4.311 ln n

n

BINARY SEARCH TREES

Correspondence between BSTs and quicksort partitioning

�17

▸ If array has no duplicate keys 1-1 correspondence.

▸ In quicksort, pivot separates array in elements that are smaller in
its left subarray and larger in its right subarray.

▸ In BST, root separates tree in elements that are smaller in its left
subtree and larger in its right subtree.

▸ This is why the mathematical analysis for BSTs was the same
with quicksort’s partitioning (the expected number of compares
of search/insert is � as is the number of compares in
quicksort).

2 ln n

TODAY’S LECTURE IN A NUTSHELL

Lecture 25-26: Binary Search Trees

▸ Binary Search Trees

▸ Ordered Operations

▸ Deletion in BSTs

�18

ORDERED OPERATIONS

Minimum and maximum

�19

▸ Minimum: go all the way left until you find a node with no left
child.

▸ Maximum: go all the way to the right until you find a node with no
right child.

 public Key min() {
 return min(root).key;
 }

 private Node min(Node x) {
 if (x.left == null)  
 return x;
 else  
 return min(x.left);
 }

ORDERED OPERATIONS

Floor

�20

▸ Floor: Largest key in BST <= query key k.

▸ Case 1: [k equals the key in node]

▸ Floor of k is k.

▸ Case 2: [k is less than key in node]

▸ Floor of k is in left subtree.

▸ Case 3: [k is greater than key in node]

▸ Floor of k is in right subtree if there is any key <=k in
right subtree.

▸ Else, floor is the key in node.

▸ Same idea for ceiling (smallest key in BST>=query key)

ORDERED OPERATIONS

Floor

�21

‣ public Key floor(Key key) {
 Node x = floor(root, key);
 if (x == null)
 return null;
 else  
 return x.key;
}

‣ private Node floor(Node x, Key key) {
 if (x == null)  
 return null;
 int cmp = key.compareTo(x.key);
 if (cmp == 0)  
 return x;
 if (cmp < 0)  
 return floor(x.left, key);
 Node t = floor(x.right, key);
 if (t != null)  
 return t;
 else  
 return x;
 }

ORDERED OPERATIONS

Rank

�22

▸ Rank: How many keys < query key k.

▸ k<key: Recur on left subtree.

▸ k == key: Everything in left subtree.

▸ k > key: Everything in left subtree + 1
+ recur on right.

ORDERED OPERATIONS

Rank

�23

▸ Rank: How many keys < query key k.

 public int rank(Key key) {
 return rank(key, root);
 }

 // Number of keys in the subtree less than key.
 private int rank(Key key, Node x) {
 if (x == null)  
 return 0;
 int cmp = key.compareTo(x.key);
 if (cmp < 0)  
 return rank(key, x.left);
 else if (cmp > 0)  
 return 1 + size(x.left) + rank(key, x.right);
 else  
 return size(x.left);
 }

ORDERED OPERATIONS

Order of growth for ordered symbol table operations

�24

Sequential search Binary search BST

search

insert

min/max 1

floor/ceiling

rank

select 1

n

n

n

n

n

n

log n

n

log n

log n

h

h

h

h

h

h

▸ Worst case search and insert are � for BSTs. Not great! O(n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 25-26: Binary Search Trees

▸ Binary Search Trees

▸ Ordered Operations

▸ Deletion in BSTs

�25

DELETION IN BST

Delete minimum key

�26

▸ Go left until finding a node with null left subtree.

▸ Replace the link to that node with its right subtree.

▸ Update subtree counts.

 public void deleteMin() {
 root = deleteMin(root);
 }

 private Node deleteMin(Node x) {
 if (x.left == null)
 return x.right;
 x.left = deleteMin(x.left);
 x.size = size(x.left) + size(x.right) + 1;
 return x;
 }

▸ Symmetric for delete maximum

DELETION IN BST

Hibbard deletion: Delete node which is a leaf

�27

▸ Delete node by setting parent link to null.

▸ Example: delete 52 locates a node which is a leaf.

�

DELETION IN BST

Hibbard deletion: Delete node with one child

�28

▸ Delete node by replacing parent link.

▸ Example: delete 70 locates a node which has one child.

�

DELETION IN BST

Hibbard deletion: Delete node with two children

�29

▸ Delete node and replace it with successor (node with smallest of the larger keys)

▸ Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

https://visualgo.net/en/bst

DELETION IN BST �30

 public void delete(Key key) {
 root = delete(root, key);
 }

 private Node delete(Node x, Key key) {
 if (x == null) return null;

 int cmp = key.compareTo(x.key);
 if (cmp < 0)
 x.left = delete(x.left, key);
 else if (cmp > 0)  
 x.right = delete(x.right, key);
 else {
 if (x.right == null)
 return x.left;
 if (x.left == null)
 return x.right;
 Node t = x; //replace with successor
 x = min(t.right);
 x.right = deleteMin(t.right);
 x.left = t.left;
 }
 x.size = size(x.left) + size(x.right) + 1;
 return x;
 }

DELETION IN BST

Hibbard deletion

�31

▸ Unsatisfactory solution. If we were to perform many insertions and
deletions the BST ends up being not symmetric and skewed to the left.

▸ The cost is � (extremely complicated analysis).

▸ No one has proven that alternating between predecessor and successor
will fix this.

▸ Hibbard devised the algorithm in 1962. Still no algorithm for efficient
deletion in BST.

▸ Overall, BSTs can have � worst-case for search, insert, and delete. We
want to do better (see future lectures).

n

O(n)

TODAY’S LECTURE IN A NUTSHELL

Lecture 25-26: Binary Search Trees

▸ Binary Search Trees

▸ Ordered Operations

▸ Deletion in BSTs

�32

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.2 (Pages 396-414)

▸ Website:

▸ https://algs4.cs.princeton.edu/32bst/

�33

Practice Problems:

▸ 3.2.1-3.2.13

https://algs4.cs.princeton.edu/32bst/

