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TODAY’S LECTURE IN A NUTSHELL

Lecture 25-26: Binary Search Trees

▸ Binary Search Trees 

▸ Ordered Operations 

▸ Deletion in BSTs
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Some slides adopted from Algorithms 4th Edition or COS226



BINARY SEARCH TREES

Definitions

▸ Binary Search Tree: A binary tree in symmetric order. 

▸ Symmetric order: Each node has a key, and every node’s 
key is: 

▸ Larger than all keys in its left subtree. 

▸ Smaller than all keys in its right subtree. 

▸ Our textbook uses BSTs to implement symbol tables, 
therefore each node holds a key-value pair. Other 
implementations (like today’s lab) hold only a key.
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BINARY SEARCH TREES

Differences between heaps and BSTs

*: depends on implementation.
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Heap BST

Supported operations Insert, delete max insert, search, delete, 
ordered operations

What is inserted Keys Key-value pairs

Underlying data structure (Resizing) array Linked nodes

Tree shape Complete binary tree Depends on data

Ordering of keys Heap-ordered Symmetrically-ordered

Duplicate keys allowed? Yes No*



BINARY SEARCH TREES

BST representation
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▸ We will use an inner class Node that is composed by: 

▸ A Key that is comparable and a Value 

▸ A reference to the root nodes of the left (smaller keys) 
and right (larger keys) subtrees.  

▸ Potentially, the total number of nodes in the subtree that 
has root this node. 

▸ A BST has a reference to a Node root.



BINARY SEARCH TREES

Node representation
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    private class Node {
        private Key key;           // sorted by key
        private Value val;         // associated data
        private Node left, right;  // left and right subtrees
        private int size;          // number of nodes in subtree

        public Node(Key key, Value val, int size) {
            this.key = key;
            this.val = val;
            this.size = size;
        }
    }
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BINARY SEARCH TREES

Search
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▸ If less go left.  

▸ If greater go right. 

▸ If equal, search hit. 

▸ Return value corresponding to given key, or null if no such key. 

▸ In other implementations, you return the last node you 
reached. 

▸ Number of compares is equal to the depth of the node + 1. 



BINARY SEARCH TREES

Search example
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BINARY SEARCH TREES

Search - iterative implementation
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▸ public Value get(Key key) {  
     Node x = root;  
     while (x != null) {  
           int cmp = key.compareTo(x.key);  
           if (cmp < 0)  
                   x = x.left;  
           else if (cmp > 0)  
                   x = x.right;  
           else if (cmp == 0)  
                   return x.val;  
      }  
      return null;  
}



BINARY SEARCH TREES

Search - recursive implementation

�11

‣ public Value get(Key key) {  
     return get(root, key);  
}

‣ private Value get(Node x, Key key) {  
     if (x == null)  
           return null;  
     int cmp = key.compareTo(x.key);  
     if (cmp < 0)  
         return get(x.left, key);  
     else if (cmp > 0)  
         return get(x.right, key);            
     else                
         return x.val;       
}



BINARY SEARCH TREES

Insert
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▸ If less go left.  

▸ If greater go right. 

▸ If null, insert. 

▸ If already exists, update value. 

▸ Number of compares is equal to the depth of the node + 1. 



BINARY SEARCH TREES

Insert example
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BINARY SEARCH TREES

Insert
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▸ public void put(Key key, Value val) {  
     root = put(root, key, val);  
}  
private Node put(Node x, Key key, Value val) {  
     if (x == null)  
           return new Node(key, val, 1);  
     int cmp = key.compareTo(x.key);  
     if (cmp < 0)  
         x.left = put(x.left, key, val);  
     else if (cmp > 0)  
         x.right = put(x.right, key, val);            
     else                
         x.val = val;  
     x.size = 1 + size(x.left) + size(x.right);  
     return x;    
}



BINARY SEARCH TREES

Tree shape
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▸ The same set of keys can result to different BSTs based on 
their order of insertion. 

▸ Number of compares for search/insert is equal to depth of 
node +1.



BINARY SEARCH TREES

BSTs mathematical analysis
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▸ If � distinct keys are inserted into a BST in random order, the 
expected number of compares of search/insert is �  (or 
� ). 

▸ If � distinct keys are inserted into a BST in random order, the 
expected height of tree is �   
[Reed, 2003]. 

▸ Worst case height is � but highly unlikely. 

▸ Keys would have to come (reversely) sorted!

n
2 ln n

1.39 log n

n
4.311 ln n

n



BINARY SEARCH TREES

Correspondence between BSTs and quicksort partitioning

�17

▸ If array has no duplicate keys 1-1 correspondence.  

▸ In quicksort, pivot separates array in elements that are smaller in 
its left subarray and larger in its right subarray. 

▸ In BST, root separates tree in elements that are smaller in its left 
subtree and larger in its right subtree. 

▸ This is why the mathematical analysis for BSTs was the same 
with quicksort’s partitioning (the expected number of compares 
of search/insert is �  as is the number of compares in 
quicksort). 

2 ln n
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ORDERED OPERATIONS

Minimum and maximum
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▸ Minimum: go all the way left until you find a node with no left 
child. 

▸ Maximum: go all the way to the right until you find a node with no 
right child. 

    public Key min() {
       return min(root).key;
    } 

    private Node min(Node x) { 
        if (x.left == null)  
            return x; 
        else  
            return min(x.left); 
    }



ORDERED OPERATIONS

Floor
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▸ Floor: Largest key in BST <= query key k. 

▸ Case 1: [k equals the key in node] 

▸ Floor of k is k.  

▸ Case 2: [k is less than key in node] 

▸ Floor of k is in left subtree. 

▸ Case 3: [k is greater than key in node] 

▸ Floor of k is in right subtree if there is any key <=k in 
right subtree. 

▸ Else, floor is the key in node. 

▸ Same idea for ceiling (smallest key in BST>=query key)



ORDERED OPERATIONS

Floor
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‣ public Key floor(Key key) {
       Node x = floor(root, key);
       if (x == null) 
           return null;
       else  
           return x.key;
}

‣ private Node floor(Node x, Key key) {
        if (x == null)  
            return null;
        int cmp = key.compareTo(x.key);
        if (cmp == 0)  
            return x;
        if (cmp <  0)  
            return floor(x.left, key);
        Node t = floor(x.right, key); 
        if (t != null)  
             return t;
        else  
             return x; 
    }



ORDERED OPERATIONS

Rank
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▸ Rank: How many keys  < query key k. 

▸ k<key: Recur on left subtree. 

▸ k == key: Everything in left subtree. 

▸ k > key: Everything in left subtree + 1 
+ recur on right.



ORDERED OPERATIONS

Rank
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▸ Rank: How many keys  < query key k. 

    public int rank(Key key) {
       return rank(key, root);
    } 

    // Number of keys in the subtree less than key.
    private int rank(Key key, Node x) {
        if (x == null)  
            return 0; 
        int cmp = key.compareTo(x.key); 
        if (cmp < 0)  
            return rank(key, x.left); 
        else if (cmp > 0)  
            return 1 + size(x.left) + rank(key, x.right); 
        else  
            return size(x.left); 
    } 



ORDERED OPERATIONS

Order of growth for ordered symbol table operations
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Sequential search Binary search BST

search

insert

min/max 1

floor/ceiling

rank

select 1

n

n

n

n

n

n

log n

n

log n

log n

h

h

h

h

h

h

▸ Worst case search and insert are �  for BSTs. Not great! O(n)
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DELETION IN BST

Delete minimum key
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▸ Go left until finding a node with null left subtree. 

▸ Replace the link to that node with its right subtree. 

▸ Update subtree counts. 

    public void deleteMin() {
        root = deleteMin(root);
   }

    private Node deleteMin(Node x) {
        if (x.left == null)
           return x.right;
        x.left = deleteMin(x.left);
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }

▸ Symmetric for delete maximum



DELETION IN BST

Hibbard deletion: Delete node which is a leaf
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▸ Delete node by setting parent link to null. 

▸ Example: delete 52 locates a node which is a leaf. 

�



DELETION IN BST

Hibbard deletion: Delete node with one child
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▸ Delete node by replacing parent link. 

▸ Example: delete 70 locates a node which has one child. 

�



DELETION IN BST

Hibbard deletion: Delete node with two children
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▸ Delete node and replace it with successor (node with smallest of the larger keys) 

▸ Example: delete 50 locates a node which has two children. Successor is 51.

https://visualgo.net/en/bst

https://visualgo.net/en/bst


DELETION IN BST �30

   public void delete(Key key) {
       root = delete(root, key);
   }

    private Node delete(Node x, Key key) {
        if (x == null) return null;

        int cmp = key.compareTo(x.key);
        if (cmp < 0)
            x.left  = delete(x.left,  key);
        else if (cmp > 0)  
            x.right = delete(x.right, key);
        else { 
            if (x.right == null)
                return x.left;
            if (x.left  == null)
                return x.right;
            Node t = x; //replace with successor
            x = min(t.right);
            x.right = deleteMin(t.right);
            x.left = t.left;
        } 
        x.size = size(x.left) + size(x.right) + 1;
        return x;
    }



DELETION IN BST

Hibbard deletion
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▸ Unsatisfactory solution. If we were to perform many insertions and 
deletions the BST ends up being not symmetric and skewed to the left. 

▸ The cost is �  (extremely complicated analysis). 

▸ No one has proven that alternating between predecessor and successor 
will fix this. 

▸ Hibbard devised the algorithm in 1962. Still no algorithm for efficient 
deletion in BST. 

▸ Overall, BSTs can have �  worst-case for search, insert, and delete. We 
want to do better (see future lectures).

n

O(n)
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.2 (Pages 396-414) 

▸ Website: 

▸ https://algs4.cs.princeton.edu/32bst/
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Practice Problems:

▸ 3.2.1-3.2.13

https://algs4.cs.princeton.edu/32bst/

