
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

24: Symbol Tables and Binary Search

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SEARCHING

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: Symbol Tables and Binary Search

▸ Symbol Tables

▸ Binary search

▸ Elementary Implementations of Symbol Tables

▸ Ordered Operations

�2

Some slides adopted from Algorithms 4th Edition or COS226

SYMBOL TABLES

Printed symbol tables are all around us

▸ Dictionary: key = word, value = definition.

▸ Encyclopedia: key = term, value = article.

▸ Phonebook: key = name, value = phone number.

▸ Math table: key = math functions and input,  
value = function output.

▸ Unsupported operations:

▸ Add a new key and associated value.

▸ Remove a given key and associated value.

▸ Change value associated with a given key.

�3

SYMBOL TABLES

Symbol tables

▸ Key-value pair abstractions.

▸ Insert a value with a specific key.

▸ Given a key, search for the corresponding value.

▸ Also known as: maps, dictionaries, associative arrays.

▸ Generalize arrays: keys not be integers between � and � .

▸ Supported either with built-in or external libraries by the
majority of programming languages.

0 n − 1

�4

SYMBOL TABLES

Basic symbol table API

▸ public class ST <Key extends Comparable<Key>, Value>

▸ ST(): create an empty symbol table. By convention, values are not null.

▸ void put(Key key, Value val): insert key-value pair.

▸ Overwrites old value with new value if key already exists.

▸ Value get(Key key): return value associated with key.

▸ Returns null if key not present.

▸ boolean contains(Key key): is there a value associated with key.

▸ Iterable keys(): all the keys in the symbol table.

▸ void delete(Key key): delete key and associated value.

▸ boolean isEmpty(): is the symbol table empty?

▸ int size(): number of key-value pairs.

�5

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: Symbol Tables and Binary Search

▸ Symbol Tables

▸ Binary search

▸ Elementary Implementations of Symbol Tables

▸ Ordered Operations

�6

BINARY SEARCH

Binary search

▸ Goal: Given a sorted array and a key, find index of the key
in the array.

▸ Basic mechanism: Compare key against middle entry.

▸ If too small, repeat in left half.

▸ If too large, repeat in right half.

▸ If equal, you are done.

�7

BINARY SEARCH

Binary search implementation

▸ First binary search published in 1946.

▸ First bug-free one in 1962.

▸ Bug in Java’s Arrays.binarySearch() discovered in 2006 https://ai.googleblog.com/
2006/06/extra-extra-read-all-about-it-nearly.html

public static int binarySearch(int[] a, int key) {  
 int lo = 0, hi = a.length-1;
 while (lo <= hi) {  
 int mid = lo + (hi - lo) / 2;  
 if (key < a[mid])  
 hi = mid - 1;  
 else if (key > a[mid])  
 lo = mid + 1;  
 else return mid; }  
 return -1;  
}
▸ Uses at most � key compares to search in a sorted array of size �, that is it is � .1 + log n n O(log n)

�8

https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html
https://ai.googleblog.com/2006/06/extra-extra-read-all-about-it-nearly.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: Symbol Tables and Binary Search

▸ Symbol Tables

▸ Binary search

▸ Elementary Implementations of Symbol Tables

▸ Ordered Operations

�9

ELEMENTARY IMPLEMENTATIONS OF SYMBOL TABLES

Sequential search in a linked list

▸ Data structure: Maintain an unordered linked list of key-
value pairs.

▸ Search: Scan through all the keys until you find a match.

▸ Insert: Scan through all the keys until you find a match. If
you found it, update value, otherwise, add to front of list.

▸ If our cost model counts how many times we will compare
keys, both search and insert are � both for worst and
average case.

O(n)

�10

ELEMENTARY IMPLEMENTATIONS OF SYMBOL TABLES

Sequential search in a linked list

�11

ELEMENTARY IMPLEMENTATIONS OF SYMBOL TABLES

Binary search in an ordered array

▸ Data structure: Maintain parallel arrays for keys and values,
sorted by keys.

▸ Search: Use binary search to find key.

▸ At most � compares to search a sorted array of
length �.

▸ Insert: Use binary search to find key. If it does not exist, shift
all larger keys over.

▸ At most � time.

O(log n)
n

O(n)

�12

ELEMENTARY IMPLEMENTATIONS OF SYMBOL TABLES

Binary search in an ordered array

�13

ELEMENTARY IMPLEMENTATIONS OF SYMBOL TABLES

Binary search in an ordered array

�14

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: Symbol Tables and Binary Search

▸ Symbol Tables

▸ Binary search

▸ Elementary Implementations of Symbol Tables

▸ Ordered Operations

�15

ORDERED OPERATIONS

Examples of ordered operations in a symbol table

�16

ORDERED OPERATIONS

Ordered symbol table API

▸ Key min(): smallest key.

▸ Key max(): largest key.

▸ Key floor(Key key): largest key less than or equal to given key.

▸ Key ceiling(Key key): smallest key greater than or equal to given key.

▸ int rank(Key key): number of keys less that given key.

▸ Key select(int k): key with rank k.

▸ Iterable keys(): all keys in symbol table in sorted order.

▸ Iterable keys(int lo, int hi): keys in [lo, …, hi] in sorted order.

�17

ORDERED OPERATIONS

Order of growth for ordered symbol table operations

�18

Sequential search Binary search

search

insert

min/max 1

floor/ceiling

rank

select 1

n

n

n

n

n

n

log n

n

log n

log n

TODAY’S LECTURE IN A NUTSHELL

Lecture 24: Symbol Tables and Binary Search

▸ Symbol Tables

▸ Binary search

▸ Elementary Implementations of Symbol Tables

▸ Ordered Operations

�19

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook: Chapter 3.1 (Pages 362-386)

▸ Website:

▸ https://algs4.cs.princeton.edu/31elementary/

�20

Practice Problems:

▸ 3.1.1-3.1.6

https://algs4.cs.princeton.edu/31elementary/

