35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

23: Priority queues

Vy "u-;z":i;\. (
. AN

" 4 \ Alexandra Papoutsaki =

* ¥ LECTURES




TODAY'S LECTURE IN A NUTSHELL

Lecture 23: Priority Queues

» Priority Queue
» Binary heap

» Heapsort

Some slides adopted from Algorithms 4th Edition or COS226



PRIORITY QUEUE

Priority Queue ADT

» Two operations:

» Delete the maximum

» Insert

» Applications: load balancing and interruption handling in
OS, Huffman codes for compression, A* search for All,

Dijkstra’s and Prim's algorithm for graph search, etc.

» How can we implement a priority queue efficiently?



PRIORITY QUEUE

Option 1: Unordered array

» The lazy approach where we defer doing work (deleting
the maximum) until necessary.

» Insertis O(1) (will be implemented as push in stacks).

» Delete maximum is O(n) (have to traverse the entire array
to find the maximum element).



PRIORITY QUEUE

public class UnorderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public UnorderedArrayMaxPQ(int capacity) {

pg = (Key[]) new Comparable[capacity];

n =0;

}

public boolean iskEmpty() { return n == 0;
public int size() { return n; }
public void insert(Key x) { pgln++] = x; }

public Key delMax() {
int max = 0;
for (int 1 = 1; 1 < n; 1++)
1f (less(max, 1)) max = 1;
exch(max, n-1);

return pq[--n];

}

private boolean less(int 1, int j) {
return pq[i].compareTo(pql[j]) < 0;

}

private void exch(int 1, int j) {
Key swap = pq[i];
pali] = palj];
palj] = swap;



PRIORITY QUEUE

Option 2: Ordered array

» The eager approach where we do the work (keeping the
list sorted) up front to make later operations efficient.

» Insertis O(n) (we have to find the index to insert and shift
elements to perform insertion).

» Delete maximum is O(1) (just take the last element which
will the maximum).



PRIORITY QUEUE

public class OrderedArrayMaxPQ<Key extends Comparable<Key>> {
private Key[] pq; // elements
private int n; // number of elements

// set inititial size of heap to hold size elements
public OrderedArrayMaxPQ(int capacity) {
pq = (Key[]) (new Comparable[capacity]);

n =0;
ks
public boolean isEmpty() { return n == 0; }
public int size() { return n; }
public Key delMax() { return pq[--n]; }

public void insert(Key key) {

int 1 = n-1;

while (i >= 0 && less(key, pql[i])) {
paqli+1] = pq[i];
1--;

}

pali+1l] = key;

N++;

}

private boolean less(Key v, Key w) {
return v.compareTo(w) < 0;

}



PRIORITY QUEUE
Option 3: Binary heap

» A new data structure!

» Will allow us to both insert and delete max in O(log n)
running time.

» There is no way to implement a priority queue in such a

way that insert and remove max can be achieved in O(1)
running time.



TODAY'S LECTURE IN A NUTSHELL

Lecture 23: Priority Queues

» Priority Queue
» Binary heap

» Heapsort



BINARY HEAP 10

Heap-ordered binary trees
» A binary tree is heap-ordered if the key in each node is larger
than or equal to the keys in that node’s two children (if any).

» Equivalently, the key in each node of a heap-ordered binary tree
is smaller than or equal to the key in that node’s parent (if any).

» Moving up from any node, we get a non-decreasing sequence
of keys.

» Moving down from any node we get a non-increasing sequence
of keys.



BINARY HEAP 11
Heap-ordered binary trees

» The largest key in a heap-ordered binary tree is found at
the root!

» Max-heap. @
» There are min-heaps. @ @



BINARY HEAP 12
Binary heap representation

» We could use a linked representation but we would need
three links for every node (one for parent, one for left
subtree, one for right subtree).

» If we use complete binary trees, we can use instead an
array.

» Compact arrays vs explicit links means memory savings.



BINARY HEAP 13
Binary heap
» Binary heap: array representation of complete heap-

ordered binary tree.

» A data structure that can efficiently support the basic
priority queue operations (insert and remove maximum).

» Items are stored in an array such that each key is
guaranteed to be larger (or equal to) than the keys at
two other specific positions.



BINARY HEAP 14

Array representation

» Nothing is placed at index 0. ali]

1 2 3 4 5 6 7 8 89
T S R P N O AEI
-

» Root is placed atindex 1.

» Rest of nodes are placed
in level order.

» No unnecessary indices and
no wasted space because it's
complete.

Heap representations



BINARY HEAP

Reuniting immediate family members.

» For every node at index k, its parent is at index |k/2].

» Its two children are atindices 2k and 2k + 1.

» We can travel up and down the tree by using this simple
arithmetic on array indices.

15



A l g Orl thm S ROBERT SEDGEWICK | KEVIN WAYNE

2.4 BINARY HEAP DEMO

Algorithms

ROBERT SEDGEWICK | KEvVIN WAYNE

http://algs4.cs.princeton.edu



BINARY HEAP 17

Swim/promote/percolate up/bottom up reheapity

» Scenario: a key becomes larger than its parent therefore it
violates the heap-ordered property.

» To eliminate the violation:
» Exchange key in child with key in parent.

» Repeat until heap order restored.



BINARY HEAP 18

Swim/promote/percolate up

private void swim(int k) {
while (k > 1 && less(k/2, k)) {
exch(k, k/2);

k = k/2;

~ violates heap order
(larger key than parent)




BINARY HEAP
Binary heap: insertion

» Insert: Add node at end in bottom level, then swim it up.

» Cost: At mostlogn + 1 compares.

public void insert(Key x) {

pa[++n] = X;
swim(n);

19



BINARY HEAP

20

Binary heap: insertion

add key to heap
violates heap order




BINARY HEAP 21
Sink/demote/top down heapify

» Scenario: a key becomes smaller than one (or both) of its
children’s keys.

» To eliminate the violation:
» Exchange key in parent with key in larger child.

» Repeat until heap order restored.



BINARY HEAP

22

Sink/demote/top down heapify

private void sink(int k) {
while (2*k <= n) {

int j = 2*k;

1f (J < n & less(3, J+1))
J++;

1f (Mless(k, 7))
break;

exch(k, 7J);

k =733

viclates heap order
( ler t} id )
‘smallert a(’h a chle




BINARY HEAP

Binary heap: return (and delete) the maximum

» Delete max: Exchange root with node at end. Return it and delete
it. Sink the new root down.

» Cost: At most 2 1ogn compares.

public Key delMax() {
Key max = pq[l1];
exch(l, n--);
sink(1l);
pg[n+1l] = null;
return max;

23



BINARY HEAP

24

Binary heap: delete and return maximum

remove the maximum
- key to remove

CRONGRO P
(e,
:
OSERCENORO

O O @ 1"




BINARY HEAP

25

Putting everything together

» Insertis O(log n).
» Delete max is O(logn).

» Look into MaxPQ class https://algs4.cs.princeton.edu/
code/edu/princeton/cs/algs4/MaxPQ.java.html



https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html
https://algs4.cs.princeton.edu/code/edu/princeton/cs/algs4/MaxPQ.java.html

BINARY HEAP

26

Putting everything together

insert P ®

insert Q
P)
insert E d@\
©
remove max (Q)
E]

(X)
E P)

(X
insert A ) 0

(X
insert M % P)

insert X

remove max (X)) @F/ .\.

insert P @
@

insert L P
A M) G
(P)
insert E P (M
® ® ®©
P)

remove max (P) (M) g)
@©®



TODAY'S LECTURE IN A NUTSHELL

27

Lecture 23: Priority Queues

» Priority Queue
» Binary heap

» Heapsort



HEAPSORT
Basic plan for in-place sort

» View input array as a complete binary tree.

» Heap construction: build a max-heap with all n keys.

» Sortdown: repeatedly remove the maximum key.

28



Heapsort demo

Sortdown. Repeatedly delete the largest remaining item.

exchange 1 and 2



HEAPSORT

Heap construction

» for(int k = n/2; k >= 1; k--)
sink(a, k, n);

» Key insight: After stnk(a,k,n) completes, the subtree
rooted at k is a heap.

sink(2, )
heap construction sink(4, 11) 0
(P L)
@ ®© @ &
® ®
~ sink(3, )
sink(5, 11)

result (heap-ordered;

30



HEAPSORT

Sortdown

» Remove the maximum, one at a time, but leave in array
instead of nulling out.

» while(n>1)4{
exch(Ca, 1, n--);
sink(a, 1, n);

5

» Key insight: After each iteration the array consists of a
heap-ordered subarray followed by a sub-array in final
order.

31



HEAPSORT

Sortdown

» while(n>1){
exch(Ca, 1, n--);
sink(a, 1, n);

¥

exch(l, 11)
sink(1, 10)

exch(l, 10)
sink(1, 9) 9

exch(l, 9)
s)i(nk(l. 8) 0

Sinkcl, 7 &)
© e
@ WO ©®®

R

Siakdl, 6 O
) @\5@
(A) L p

exch(l, 6) @

sink(1, 5)
o G

exch(l, 5)
sink(1, 4)(:)”,¢”(::L\(:)

@f M
h(l, 4)
Sink(l. 35 E)
(A) E)
L
exch(l, 3)
s?nk(l. 2) <:>

exch(l, 2)
s?nk(l. 1) (:>

“A
2 E ‘E
L o I T
SR QS lOT llx

result (sorted)



HEAPSORT

Heapsort analysis

» Heap construction makes O(n) exchanges and O(n) compares.

» Heapsort uses O(nlogn) exchanges and compares.

» In-place sorting algorithm with O(n log n) worst-case!
» Remember:
» mergesort: not in place, requires linear extra space.
» quicksort: quadratic time in worst case.
» Heapsort is optimal both for time and space, but:
» Inner loop longer than quick sort.
» Poor use of cache.

» Not stable.

33



HEAPSORT

What you need to remember about sorting

In

Stable Best Average Worst Remarks
place
Selection| X 1/212 1/2n2 | 1/2n2 n exchanges
Use for small arrays
i 2 2
Insertion | X X . 1/4n 1/2n or partially ordered
Merge X 1/2n10gn nlogn nlogn Guaranteed
performance; stable
nlogn probabilistic
Quick | X nlogn | 2nlnn | 1/2n° |guarantee; fastest in
practice
Heap X nlogn | 2nlogn |2nlogn nlognguarantee; in
place




TODAY'S LECTURE IN A NUTSHELL

35

Lecture 23: Priority Queues

» Priority Queue
» Binary heap

» Heapsort



ASSIGNED READINGS AND PRACTICE PROBLEMS

36

Readings:

» Textbook:

» Chapter 2.4 (Pages 308-327), 2.5 (336-344)

» Website:

» Priority Queues: https://algs4.cs.princeton.edu/24pqg/

Practice Problems:

» 2.4.1-2.4.11. Also try some creative problems.


https://algs4.cs.princeton.edu/24pq/

