
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

19: Quicksort

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: Quicksort

▸ Quicksort

�2

Some slides adopted from Algorithms 4th Edition or COS226

QUICKSORT

Mergesort and Quicksort: the classics

▸ Mergesort used in Java to sort objects.

▸ Quicksort used in Java to sort primitives.

▸ Quicksort was invented by Sir Tony Hoare in 1959.

▸ Wanted to sort Russian words before looking them up in dictionary.

▸ Came up with quicksort but did not know how to implement it.

▸ Learned Algol 60 and recursion and implemented it.

▸ Won the 1980 Turing Award.

▸ Bob Sedgewick (author of your textbook) refined and analyzed many versions
of quicksort.

QUICKSORT

Basic Plan

▸ Shuffle the array.

▸ Partition so that, for some pivot j:

▸ Entry a[j] is in place.

▸ There is no larger entry to the left of j.

▸ No smaller entry to the right of j.

▸ Sort each subarray recursively.  
 
 

QUICKSORT

Partition

▸ Partition the subarray a[lo…hi] so that  
a[lo…j-1]<=a[j]<=a[j+1…hi]

▸ Start with pointer i at lo and pointer j at hi+1.

▸ Repeat the following until pointers i and j cross:

▸ Scan i from left to right as long as a[i]<a[lo].

▸ Scan j from right to left as long as a[j]>a[lo].

▸ Exchange a[i] with a[j].

▸ Exchange [lo] and a[j]. Return j.

QUICKSORT

Partition Example

QUICKSORT

Partition Code

 // partition the subarray a[lo..hi] so that a[lo..j-1] <= a[j] <= a[j+1..hi]
 // and return the index j.
 private static int partition(Comparable[] a, int lo, int hi) {
 int i = lo;
 int j = hi + 1;
 Comparable v = a[lo];
 while (true) {

 // find item on lo to swap
 while (less(a[++i], v)) {
 if (i == hi) break;
 }

 // find item on hi to swap
 while (less(v, a[--j])) {
 if (j == lo) break; // redundant since a[lo] acts as sentinel
 }

 // check if pointers cross
 if (i >= j) break;

 exch(a, i, j);
 }

 // put partitioning item v at a[j]
 exch(a, lo, j);

 // now, a[lo .. j-1] <= a[j] <= a[j+1 .. hi]
 return j;
 }

QUICKSORT

Quicksort Code

 /**
 * Rearranges the array in ascending order, using the natural order.
 * @param a the array to be sorted
 */
 public static void sort(Comparable[] a) {
 StdRandom.shuffle(a);
 sort(a, 0, a.length - 1);
 }

 // quicksort the subarray from a[lo] to a[hi]
 private static void sort(Comparable[] a, int lo, int hi) {
 if (hi <= lo) return;
 int j = partition(a, lo, hi);
 sort(a, lo, j-1);
 sort(a, j+1, hi);
 }

QUICKSORT

Quicksort Demo

QUICKSORT

Quicksort Considerations

▸ Partitioning in-place:Using an extra array makes partitioning easier
(and stable), but it is not worth the cost.

▸ Terminating the loop: Testing whether the pointers cross is trickier than
it might seem.

▸ Equal keys: When duplicate keys are present, it is (counter-intuitively)
better to stop scans on keys equal to the partitioning item’s key.

▸ Preserving randomness: Shuffling is needed for performance
guarantee.

▸ Equivalent alternative: Pick a random partitioning item in each
subarray.

QUICKSORT

Great algorithms are better than good ones

‣ Your laptop executes comparisons per second
‣ A supercomputer executes comparisons per second

108

1012

Insertion
sort

Mergesort Quicksort

Computer
Thousa

nd
inputs

Millio
n

inputs

Billion
inputs

Thousa
nd

inputs

Million
inputs

Billion
inputs

Thousa
nd

inputs

Million
inputs

Billion
inputs

Home Instant 2
hours

300
years instant 1 sec 15 min Instant 0.5 sec 10 min

Supercom
puter Instant

1
secon

d

1
week instant instant instant instant instant Instant

QUICKSORT

Quicksort analysis: best case

‣ Quicksort divides everything exactly in half.
‣ Similar to merge sort
‣ Number of compares is ~n log n

QUICKSORT

Quicksort analysis: worst case

‣ Data are already sorted.
‣ Number of compares is ~ - quadratic!
‣ Extremely unlikely if we shuffle and our shuffling is not broken.

1/2n2

QUICKSORT

Quicksort - things to remember

‣ ~ or compares on average
‣ 39% more compares than merge sort but in practice is faster

because it does not move data much.
‣ If good implementation, even in sorted arrays it can be

linearithmic. If not, we end up with quadratic.
‣ exchanges.
‣ We won’t do the analysis.

‣ In-place sorting.
‣ Not stable

2n ln n 1.39n log n

1/3n ln n

QUICKSORT

Quicksort practical improvements

‣ Use insertion sort for small subarrays.
‣ Too much overhead for tiny subarrays.
‣ Cutoff to insertion sort usually around 10 items.

‣ Best choice of pivot is the median

TODAY’S LECTURE IN A NUTSHELL

Lecture 19: Quicksort

▸ Quicksort

�16

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.3 (Pages 288-296)

▸ Website:

▸ Quicksort: https://algs4.cs.princeton.edu/23quicksort/

▸ Code: https://algs4.cs.princeton.edu/23quicksort/Quick.java.html

�17

Practice Problems:

▸ 2.3.1-2.3.4

https://algs4.cs.princeton.edu/23quicksort/
https://algs4.cs.princeton.edu/23quicksort/Quick.java.html

