
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

16-17: Sorting Basics

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

SORTING

TODAY’S LECTURE IN A NUTSHELL

Lecture 16-17: Sorting Basics

▸ Introduction

▸ Selection sort

▸ Insertion sort

�2

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION

Why study sorting?

▸ Analyzing sorting algorithms is a good example of how to
compare the performance of different algorithms for the
same problem.

▸ Many of the techniques used here can be found in
different problems.

▸ Sorting your input will often be a good starting point when
solving other problems.

INTRODUCTION

Definitions

▸ Sorting: the process of arranging � items of a collection in some
logical order, typically numerically or alphabetically.

▸ Examples: sorting students by names, purchases by price,
neighborhoods by zipcode, flights by departure time, etc.

▸ Key: assuming that an item (also known as record, tuple, etc)
consists of multiple components, sort key is the property based
on which we sort items.

▸ Examples: items could be books and potential keys are the
title or the author which can be sorted alphabetically.

n

INTRODUCTION

Total order

▸ Sorting is well defined if and only if there is total order.

▸ Total order: a binary relation � that satisfies:

▸ Totality: for all v and w, if both � or � or both.

▸ Transitivity: for all v and w, if both � or � then
� .

▸ Antisymmetry: for all v and w, if both � and �
then � .

≤

v ≤ w w ≤ v

v ≤ w w ≤ x
v ≤ x

v ≤ w w ≤ v
v = w

INTRODUCTION

Rules of the game

▸ We will be sorting arrays of � items, where each item contains a key.

▸ In Java, objects are responsible in telling us how to naturally compare their keys.

▸ This is achieved by making our class T implement the Comparable interface (more on this
in a few lectures). We will need to compareTo to satisfy a total order:

▸ public int compareTo(T that)

▸ Implement it so that v.compareTo(w):

▸ Returns >0 if v is greater than w.

▸ Returns <0 if v is smaller than w.

▸ Returns 0 if v is equal to w.

▸ Java classes such as Integer, Double, String, File all implement Comparable.

n

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

INTRODUCTION

Two useful abstractions

▸ We will refer to data only through comparisons and exchanges.

▸ Less: Is v less than w?

 private static boolean less(Comparable v, Comparable w) {
 return v.compareTo(w) < 0;
 }

▸ Exchange: swap item in array a[] at index i with the one at
index j.  
private static void exch(Comparable[] a, int i, int j) {  
 Comparable swap = a[i]; 
 a[i]=a[j];  

 a[j]=swap;  
}

INTRODUCTION

Rules of the game

▸ Sorting cost model: we count compares and exchanges. If
a sorting algorithm does not use exchanges, we count
array accesses.

▸ Extra memory: often as important as running time. Sorting
algorithms are divided into two categories:

▸ In place: use constant or logarithmic extra memory.

▸ Not in place: use linear auxiliary memory.

TODAY’S LECTURE IN A NUTSHELL

Lecture 16-17: Sorting Basics

▸ Introduction

▸ Selection sort

▸ Insertion sort

�9

SELECTION SORT

Selection sort

▸ First, find the smallest item in the array.

▸ Exchange it with the first entry.

▸ Then, find the next smallest item.

▸ Exchange it with the second entry.

▸ Continue until the entire array is sorted.

SELECTION SORT

Selection sort

SELECTION SORT

Selection sort

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (less(a[j], a[min]))
 min = j;
 }
 exch(a, i, min);
 }
 }
▸ Invariants: At the end of each iteration i:

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]

▸ no entry in a[i+1…n-1] is smaller than any entry in a[0…i]

� In iteration i←

� Find the index min of the
smallest remaining array
←

� swap a[i] and a[min]←

SELECTION SORT

Selection sort: mathematical analysis for worst-case

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 int min = i;
 for (int j = i+1; j < n; j++) {
 if (less(a[j], a[min]))
 min = j;
 }
 exch(a, i, min);
 }
 }
▸ Comparisons: � ~� , that is � .

▸ Exchanges: � or �

▸ Running time is quadratic, even if input is sorted.

▸ In-place, requires almost no additional memory.

1 + 2 + … + (n − 2) + (n − 1) n2/2 O(n2)

n O(n)

SELECTION SORT

Practice Time

‣ Using selection sort, sort the array with elements
[12,10,16,11,9,7].

‣ Visualize your work for every iteration of the algorithm.

SELECTION SORT

Answer

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort

TODAY’S LECTURE IN A NUTSHELL

Lecture 16: Sorting Basics I

▸ Introduction

▸ Selection sort

▸ Insertion sort

�17

INSERTION SORT

Insertion sort

▸ Move from left to right through the array.

▸ Look at one element at a time and move it before the
larger items on its left.

▸ Everything before the current time is sorted.

▸ Everything after the current time has not been examined
yet.

INSERTION SORT

Insertion sort

INSERTION SORT

In case you didn’t get this…

‣ https://www.youtube.com/watch?v=ROalU379l3U

https://www.youtube.com/watch?v=ROalU379l3U

INSERTION SORT

Insertion sort

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }
 }
▸ Invariants: At the end of each iteration i:

▸ the array a is sorted in ascending order for the first i+1 elements a[0…i]

INSERTION SORT

Insertion sort: mathematical analysis for worst-case

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }
 }
▸ Comparisons: � ~� , that is � .

▸ Exchanges: � ~� , that is � .

▸ Worst-case running time is quadratic.

▸ In-place, requires almost no additional memory.

0 + 1 + 2 + … + (n − 2) + (n − 1) n2/2 O(n2)

0 + 1 + 2 + … + (n − 2) + (n − 1) n2/2 O(n2)

INSERTION SORT

Insertion sort: average and best case

public static void sort(Comparable[] a) {
 int n = a.length;
 for (int i = 0; i < n; i++) {
 for (int j = i; j > 0; j--) {
 if(less(a[j], a[j-1]))
 exch(a, j, j-1);
 else
 break;
 }
 }
 }
▸ Average case: quadratic for both comparisons and exchanges ~� when sorting a

randomly ordered array.

▸ Best case: � comparisons and � exchanges for an already sorted array.

n2/4

n − 1 0

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

https://www.toptal.com/developers/sorting-algorithms/insertion-sort

INSERTION SORT

Practice Time

‣ Using insertion sort, sort the array with elements
[12,10,16,11,9,7].

‣ Visualize your work for every iteration of the algorithm.

INSERTION SORT

Answer

 https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec89/selection-sort
https://subscription.packtpub.com/book/application_development/9781785888731/13/ch13lvl1sec90/insertion-sort?query=insertion%20sort

TODAY’S LECTURE IN A NUTSHELL

Lecture 16-17: Sorting Basics

▸ Introduction

▸ Selection sort

▸ Insertion sort

�27

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 2.1 (pages 244–262)

▸ Website:

▸ Elementary sorts: https://algs4.cs.princeton.edu/21elementary/

▸ Code: https://algs4.cs.princeton.edu/21elementary/Selection.java.html and  
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

�28

Practice Problems:

▸ 2.1.1-2.1.8

https://algs4.cs.princeton.edu/21elementary/
https://algs4.cs.princeton.edu/21elementary/Selection.java.html
https://algs4.cs.princeton.edu/21elementary/Insertion.java.html

