
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

14: Analysis of Algorithms II

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

BASIC DATA STRUCTURES

TODAY’S LECTURE IN A NUTSHELL

Lecture 14: Analysis of Algorithms II

▸ Theory of Algorithms

▸ Running Time of Linked List operations

▸ Running Time of Linked Stack operations

▸ Running Time of Linked Queue operations

▸ Running Time of ArrayList operations

▸ Memory Consumption of Stacks

�2

Some slides adopted from Algorithms 4th Edition or COS226

THEORY OF ALGORITHMS

Type of analyses

▸ Best case: lower bound on cost.

▸ What the goal of all inputs should be.

▸ Often not realistic, only applies to “easiest” input.

▸ Worst case: upper bound on cost.

▸ Guarantee on all inputs.

▸ Calculated based on the “hardest” input.

▸ Average case: expected cost for random input.

▸ A way to predict performance.

▸ Not straightforward how we model random input.

THEORY OF ALGORITHMS

Asymptotic Notations

▸ Θ notation: bounds function from above and below.

▸ Ο notation: bounds function from above.

▸ Ω notation: bounds function from below.

THEORY OF ALGORITHMS

Big O - asymptotic upper bound

▸ For a given function � , � is the set of functions  
{� : there exist positive constants � and � such that
� , for all � }

g(n) O(g(n))
f(n) c n0

0 ≤ f(n) ≤ cg(n) n > n0

THEORY OF ALGORITHMS

Asymptotic analysis simplifies analyzing worst-case performance

▸ We will be dropping constants. For example:

▸ �

▸ �

▸ �

▸ Yes, � , but that’s a rather useless bound.

▸ Sorting them by increasing rate of growth:

▸ �

3n3 + 2n + 7 = O(n3)

2n + n2 = O(2n)

1000 = O(1)

3n3 + 2n + 7 = O(n6)

O(1), O(log n), O(n), O(n log n), O(n2), O(n3), O(2n), O(n!)

THEORY OF ALGORITHMS

How to interpret Big O

▸ � or "order one”: running time does not change as size of the
problem changes, that is running time stays constant and independent
of problem size.

▸ � or "order log n”: running time increases as problem size grows.
Whenever problem size doubles, running time increases by a constant.

▸ � or "order n”: time increases proportionally to the the rate of growth
of the size of the problem, that is in a linear rate. Double the problem
size, you get double running time.

▸ � or "order n squared”: Double the problem size you get quadruple
running time.

O(1)

O(log n)

O(n)

O(n2)

TODAY’S LECTURE IN A NUTSHELL

Lecture 14: Analysis of Algorithms II

▸ Theory of Algorithms

▸ Running Time of Linked List operations

▸ Running Time of Linked Stack operations

▸ Running Time of Linked Queue operations

▸ Running Time of ArrayList operations

▸ Memory Consumption of Stacks

�8

RUNNING TIME OF LINKED LIST OPERATIONS

add() in singly linked lists is � for worst caseO(1)

public void add(Item item) {
// Save the old node
Node oldfirst = first;

// Make a new node and assign it to head. Fix pointers.
first = new Node();
first.item = item;
first.next = oldfirst;

n++; // increase number of nodes in singly linked list.
}

�9

RUNNING TIME OF LINKED LIST OPERATIONS

get() in singly linked lists is � for worst caseO(n)

 public Item get(int index) {
rangeCheck(index);

Node finger = first;
// search for index-th element or end of list
while (index > 0) {

finger = finger.next;
index--;

}
return finger.item;

}

�10

RUNNING TIME OF LINKED LIST OPERATIONS

add(int index, Item item) in singly linked lists is � for worst caseO(n)

public void add(int index, Item item) {
rangeCheck(index);

if (index == 0) {
add(item);

} else {

Node previous = null;
Node finger = first;
// search for index-th position
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// create new value to insert in correct position.
Node current = new Node();
current.next = finger;
current.item = item;
// make previous value point to new value.
previous.next = current;

n++;
}

}

�11

RUNNING TIME OF LINKED LIST OPERATIONS

remove() in singly linked lists is � for worst caseO(1)

public Item remove() {
Node temp = first;
// Fix pointers.
first = first.next;

n--;

return temp.item;
}

�12

RUNNING TIME OF LINKED LIST OPERATIONS

remove(int index) in singly linked lists is � for worst caseO(n)

public Item remove(int index) {
rangeCheck(index);

if (index == 0) {
return remove();

} else {
Node previous = null;
Node finger = first;
// search for value indexed, keep track of previous
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
previous.next = finger.next;

n--;
// finger's value is old value, return it
return finger.item;

}

}

�13

RUNNING TIME OF LINKED LIST OPERATIONS

addFirst() in doubly linked lists is � for worst caseO(1)

public void addFirst(Item item) {
// Save the old node
Node oldfirst = first;

// Make a new node and assign it to head. Fix pointers.
first = new Node();
first.item = item;
first.next = oldfirst;
first.prev = null;

// if first node to be added, adjust tail to it.
if (last == null)

last = first;
else

oldfirst.prev = first;

n++; // increase number of nodes in doubly linked list.
}

�14

RUNNING TIME OF LINKED LIST OPERATIONS

addLast() in doubly linked lists is � for worst caseO(1)

public void addLast(Item item) {
// Save the old node
Node oldlast = last;

// Make a new node and assign it to tail. Fix pointers.
last = new Node();
last.item = item;
last.next = null;
last.prev = oldlast;

// if first node to be added, adjust head to it.
if (first == null)

first = last;
else

oldlast.next = last;

n++;
}

�15

RUNNING TIME OF LINKED LIST OPERATIONS

add(int index, Item item) in doubly linked lists is � for worst caseO(n)

public void add(int index, Item item) {
rangeCheck(index);

if (index == 0) {
addFirst(item);

} else if (index == size()) {
addLast(item);

} else {

Node previous = null;
Node finger = first;
// search for index-th position
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
// create new value to insert in correct position
Node current = new Node();
current.item = item;
current.next = finger;
current.prev = previous;
previous.next = current;
finger.prev = current;

n++;
}

}

�16

RUNNING TIME OF LINKED LIST OPERATIONS

removeFirst() in doubly linked lists is � for worst caseO(1)

public Item removeFirst() {
Node oldFirst = first;
// Fix pointers.
first = first.next;
// at least 1 nodes left.
if (first != null) {

first.prev = null;
} else {

last = null; // remove final node.
}
oldFirst.next = null;

n--;

return oldFirst.item;
}

�17

RUNNING TIME OF LINKED LIST OPERATIONS

removeLast() in doubly linked lists is � for worst caseO(1)

public Item removeLast() {

Node temp = last;
last = last.prev;

// if there was only one node in the doubly linked list.
if (last == null) {

first = null;
} else {

last.next = null;
}
n--;
return temp.item;

}

�18

RUNNING TIME OF LINKED LIST OPERATIONS

remove(int index) in doubly linked lists is � for worst caseO(n)

public Item remove(int index) {
rangeCheck(index);

if (index == 0) {
return removeFirst();

} else if (index == size() - 1) {
return removeLast();

} else {
Node previous = null;
Node finger = first;
// search for value indexed, keep track of previous
while (index > 0) {

previous = finger;
finger = finger.next;
index--;

}
previous.next = finger.next;
finger.next.prev = previous;

n--;
// finger's value is old value, return it
return finger.item;

}

}

�19

TODAY’S LECTURE IN A NUTSHELL

Lecture 14: Analysis of Algorithms II

▸ Theory of Algorithms

▸ Running Time of Linked List operations

▸ Running Time of Linked Stack operations

▸ Running Time of Linked Queue operations

▸ Running Time of ArrayList operations

▸ Memory Consumption of Stacks

�20

RUNNING TIME OF LINKED STACK OPERATIONS

push(Item item) in linked stack is � for worst caseO(1)

 public void push(Item item) {
 Node oldfirst = first;
 first = new Node();
 first.item = item;
 first.next = oldfirst;
 n++;
 }

‣ Same time complexity both for singly and doubly linked list

�21

RUNNING TIME OF LINKED STACK OPERATIONS

pop() in linked stack is � for worst caseO(1)

 public Item pop() {
 if (isEmpty()) throw new NoSuchElementException("Stack underflow");
 Item item = first.item;
 first = first.next;
 n--;
 return item;
 }

‣ Same time complexity both for singly and doubly linked list

�22

TODAY’S LECTURE IN A NUTSHELL

Lecture 14: Analysis of Algorithms II

▸ Theory of Algorithms

▸ Running Time of Linked List operations

▸ Running Time of Linked Stack operations

▸ Running Time of Linked Queue operations

▸ Running Time of ArrayList operations

▸ Memory Consumption of Stacks

�23

RUNNING TIME OF LINKED QUEUE OPERATIONS

enqueue(Item item) in (doubly) linked queue is � for worst caseO(1)

 public void enqueue(Item item) {
 Node oldlast = last;
 last = new Node();
 last.item = item;
 last.next = null;
 if (isEmpty())
 first = last;
 else
 oldlast.next = last;
 n++;
 }

�24

RUNNING TIME OF LINKED QUEUE OPERATIONS

dequeue(Item item) in (doubly) linked queue is � for worst caseO(1)

 public Item dequeue() {
 if (isEmpty())
 throw new NoSuchElementException("Queue underflow");
 Item item = first.item;
 first = first.next;
 n--;
 if (isEmpty())
 last = null;
 return item;
 }

�25

RUNNING TIME OF LINKED QUEUE OPERATIONS

Queues as singly linked lists

‣ if only head pointer and have to enqueue at the tail.
‣ if we have a tail pointer.
‣Simple modification in code, big gains!
‣Version that textbook follows.

O(n)
O(1)

�26

TODAY’S LECTURE IN A NUTSHELL

Lecture 14: Analysis of Algorithms II

▸ Theory of Algorithms

▸ Running Time of Linked List operations

▸ Running Time of Linked Stack operations

▸ Running Time of Linked Queue operations

▸ Running Time of ArrayList operations

▸ Memory Consumption of Stacks

�27

RUNNING TIME OF ARRAYLIST OPERATIONS

Worst-case performance of add() is �O(n)

‣Cost model: 1 for insertion, � for copying � items to a new array.
‣Worst-case: If arraylist is full, add() will need to call resize to
create a new array of double the size, copy all items, insert new one.
‣Total cost: � .

‣Realistically, this won’t be happening often and worst-case analysis
can be too strict. We will use amortized time analysis instead.

n n

n + 1 = O(n)

�28

RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis

‣Amortized cost per operation: for a sequence of � operations, it is
the total cost of operations divided by �.
‣Simplest form of amortized analysis called aggregate method.
More complicated methods exist, such as accounting (banking)
and potential (physicist’s).

n
n

�29

RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis for � add() operationsn

�

‣ As the arraylist increases, doubling happens half as often but costs twice as much.
‣ � total cost)= � (“cost of insertions”) + � (“cost of copying”)
‣� (“cost of insertions”) � .
‣� (“cost of copying”) = � .

‣ � total cost) � , therefore amortized cost is � , but “lumpy”.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0
Copying
Cost 16

1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1
Total
Cost 17

O(∑ ∑
∑ = n

∑ 1 + 2 + 22 + . . .2⌊log 2n⌋ ≤ 2n

O(≤ 3n ≤
3n
n

= 3 = O(1)

�30

RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis for � add() operations when increasing arraylist by 1.n

�

‣� (“cost of insertions”) � .
‣� (“cost of copying”) = � .
‣ � total cost) � , therefore amortized cost is
� or � .
‣Same idea when increasing arraylist size by a constant.

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Copying
Cost 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Total
Cost 17

∑ = n

∑ 1 + 2 + 3 + . . . + n − 1 = n(n − 1)/2
O(= n + n(n − 1)/2 = n(n + 1)/2

(n + 1)/2 O(n)

�31

TODAY’S LECTURE IN A NUTSHELL

Lecture 14: Analysis of Algorithms II

▸ Theory of Algorithms

▸ Running Time of Linked List operations

▸ Running Time of Linked Stack operations

▸ Running Time of Linked Queue operations

▸ Running Time of ArrayList operations

▸ Memory Consumption of Stacks

�32

MEMORY CONSUMPTION OF STACKS

A (linked) stack with � items uses ~� bytesn 40n

‣16 bytes (object overhead)
‣8 bytes (inner class overhead)
‣8 bytes (reference to an Item)
‣8 bytes (reference to next node)
‣Total: 40 bytes per stack Node

‣This analysis does not take into consideration the size of the Item
objects.

�33

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Textbook:

▸ Chapter 1.4 (pages 197–199)

▸ Website:

▸ Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

�34

Practice Problems:

▸ 1.4.1, 1.4.5 - 1.4.7, 1.4.32, 1.4.35-1.4.36.

https://algs4.cs.princeton.edu/14analysis/

