35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

14: Analysis of Algorithms ||

&= Mark Kampe

" @ \ Alexandra Papoutsaki
: S | ABS

"B 7 Lecures

TODAY'S LECTURE IN A NUTSHELL

Lecture 14: Analysis of Algorithms Il

» Theory of Algorithms

» Running Time of Linked List operations

» Running Time of Linked Stack operations

» Running Time of Linked Queue operations
» Running Time of ArrayList operations

» Memory Consumption of Stacks

Some slides adopted from Algorithms 4th Edition or COS226

THEORY OF ALGORITHMS

Type of analyses

» Best case: lower bound on cost.

» What the goa

» Often notrea

of all inputs s

istic, only app

hould be.

les to "easiest” input.

» Worst case: upper bound on cost.

» Guarantee on all inputs.

» Calculated based on the "hardest” input.

» Average case: expected cost for random input.

» A way to predict performance.

» Not straightforward how we model random input.

THEORY OF ALGORITHMS

Asymptotic Notations

» © notation: bounds function from above and below.

» O notation: bounds function from above.

» @ notation: bounds function from below.

c28(n)

f(n)

c1g(n)

no

f(n) =0O(gn))

n

cg(n)

n

"0t) = 0(g(n))

"ln ; "
f(n) =82(gn))

THEORY OF ALGORITHMS
Big O - asymptotic upper bound

» For a given function g(n), O(g(n)) is the set of functions
{f(n): there exist positive constants ¢ and n, such that
0 < f(n) < cg(n), for all n > ny)

c28(n) cg(n)

f(n)

f(n) £

crg(n)

n ' n : n

; no . ng
fn) =0(g(hn)) f(n) = 0(g(n)) f(n) =82(g(n))

un

THEORY OF ALGORITHMS
Asymptotic analysis simplifies analyzing worst-case performance

» We will be dropping constants. For example:
» 3n° +2n+7 = O(n°)
» 2"+ n* = 0(2")
» 1000 = O(1)
» Yes, 3n° + 2n + 7 = O(n®), but that's a rather useless bound.

» Sorting them by increasing rate of growth:

» O(1), O(log n), O(n), O(nlog n), O(n?), O(n>), 02", O(n!)

THEORY OF ALGORITHMS

How to interpret Big O

» O(1) or "order one”: running time does not change as size of the

problem changes, that is running time stays constant and independent
of problem size.

» O(logn) or "order log n”: running time increases as problem size grows.
Whenever problem size doubles, running time increases by a constant.

» O(n) or "order n”: time increases proportionally to the the rate of growth
of the size of the problem, that is in a linear rate. Double the problem
size, you get double running time.

» O(n?) or "order n squared”: Double the problem size you get quadruple
running time.

TODAY'S LECTURE IN A NUTSHELL

Lecture 14: Analysis of Algorithms Il

» Theory of Algorithms

» Running Time of Linked List operations

» Running Time of Linked Stack operations

» Running Time of Linked Queue operations
» Running Time of ArrayList operations

» Memory Consumption of Stacks

RUNNING TIME OF LINKED LIST OPERATIONS

add() in singly linked lists is O(1) for worst case

public void add(Item item) {
// Save the old node
Node oldfirst = first;

// Make a new node and assign it to head. Fix pointers.
first = new Node();

first.item = item;

first.next = oldfirst;

n++; // increase number of nodes 1in singly linked list.

RUNNING TIME OF LINKED LIST OPERATIONS

get() in singly linked lists is O(n) for worst case

public Item get(int index) {
rangeCheck(index);

Node finger = first;
// search for index-th element or end of list
while (index > @) {

finger = finger.next;

index--;

}

return finger.item;

10

RUNNING TIME OF LINKED LIST OPERATIONS 11

add(int index, Item 1i1tem) insingly linked lists is O(n) for worst case

public void add(int index, Item item) {
rangeCheck(index);

1f (index == 0) {
add(item);
} else {

Node previous = null;
Node finger = first;
// search for index-th position
while (index > @) {
previous = finger;
finger = finger.next;
index--;
}
// create new value to insert in correct position.
Node current = new Node();
current.next = finger;
current.item = item;
// make previous value point to new value.
previous.next = current;

N++;

RUNNING TIME OF LINKED LIST OPERATIONS

remove() in singly linked lists is O(1) for worst case

public Item remove() {
Node temp = first;
// Fix pointers.
first = first.next;

n--;

return temp.1item;

12

RUNNING TIME OF LINKED LIST OPERATIONS 13

remove(int 1index) in singly linked lists is O(n) for worst case

public Item remove(int index) {
rangeCheck(index);

if (index == @) {
return remove();
} else {
Node previous = null;
Node finger = first;
// search for value indexed, keep track of previous
while (index > @) {
previous = finger;
finger = finger.next;
index--;
¥

previous.next = finger.next;

n--3;
// finger's value 1s old value, return it
return finger.item;

RUNNING TIME OF LINKED LIST OPERATIONS

14

addF1rst() in doubly linked lists is O(1) for worst case

public void addFirst(Item item) {
// Save the old node
Node oldfirst = first;

// Make a new node and assign it to head. Fix pointers.
first = new Node();

first.item = item;

first.next = oldfirst;

first.prev = null;

// 1f first node to be added, adjust tail to 1it.
1f (last == null)

last = first;
else

oldfirst.prev = first;

n++; // increase number of nodes in doubly linked 1l1ist.

RUNNING TIME OF LINKED LIST OPERATIONS

addLast() in doubly linked lists is O(1) for worst case

public void addLast(Item item) {
// Save the old node
Node oldlast = last;

// Make a new node and assign it to tail. Fix pointers.
last = new Node();

last.item = 1item;

last.next = null;

last.prev = oldlast;

// 1f first node to be added, adjust head to 1it.
1f (first == null)

first = last;
else

oldlast.next = last;

N++;

15

RUNNING TIME OF LINKED LIST OPERATIONS 16

add(int index, Item 1item) in doubly linked lists is O(n) for worst case

public void add(int index, Item item) {
rangeCheck(index);

if (index == @) {
addFirst(item);

} else if (index == size()) {
addLast(item);

} else {

Node previous = null;
Node finger = first;
// search for index-th position
while (index > @) {
previous = finger;
finger = finger.next;
index--;
¥

// create new value to insert in correct position

Node current = new Node();
current.item = item;
current.next = finger;
current.prev = previous;

previous.next = current;
finger.prev = current;

N++;

RUNNING TIME OF LINKED LIST OPERATIONS

removeFirst() in doubly linked lists is O(1) for worst case

public Item removeFirst() {
Node oldFirst = first;
// Fix pointers.
first = first.next;
// at least 1 nodes left.
1f (first !'= null) {
first.prev = null;
} else {
last = null; // remove final node.

}

oldFirst.next = null;
n--,

return oldFirst.item;

17

RUNNING TIME OF LINKED LIST OPERATIONS

removelLast() in doubly linked lists is O(1) for worst case

public Item removeLast() {

Node temp = last;
last = last.prev;

// 1f there was only one node in the doubly linked list.
1f (last == null) {

first = null;
} else {
last.next = null;

¥
n--;
return temp.item;

18

RUNNING TIME OF LINKED LIST OPERATIONS 19

remove(int 1index) in doubly linked lists is O(n) for worst case

public Item remove(int index) {
rangeCheck(index);

1f (index == 0) {
return removeFirst(Q);
} else if (index == size() - 1) {
return removelLast();
} else {
Node previous = null;
Node finger = first;
// search for value indexed, keep track of previous
while (index > @) {
previous = finger;
finger = finger.next;
index--;
¥
previous.next = finger.next;
finger.next.prev = previous;

n--3
// finger's value 1s old value, return it
return finger.1item;

TODAY'S LECTURE IN A NUTSHELL

20

Lecture 14: Analysis of Algorithms Il

» Theory of Algorithms

» Running Time of Linked List operations

» Running Time of Linked Stack operations

» Running Time of Linked Queue operations
» Running Time of ArrayList operations

» Memory Consumption of Stacks

RUNNING TIME OF LINKED STACK OPERATIONS

push(Item 1tem) in linked stackis O(1) for worst case

public void push(Item item) {
Node oldfirst = first;
first = new Node();
first.item = item;
first.next = oldfirst;
N++;

» Same time complexity both for singly and doubly linked list

21

RUNNING TIME OF LINKED STACK OPERATIONS

pop() in linked stack is O(1) for worst case

public Item pop() {
1t (1sEmpty()) throw new NoSuchElementException("Stack underflow");
Ttem i1tem = first.item;
first = first.next;
n--;
return item;

¥

» Same time complexity both for singly and doubly linked list

22

TODAY'S LECTURE IN A NUTSHELL

23

Lecture 14: Analysis of Algorithms Il

» Theory of Algorithms

» Running Time of Linked List operations

» Running Time of Linked Stack operations

» Running Time of Linked Queue operations
» Running Time of ArrayList operations

» Memory Consumption of Stacks

RUNNING TIME OF LINKED QUEUE OPERATIONS 24

enqueue(Item 1tem) in(doubly)linked queue is O(1) for worst case

public void enqueue(Item item) {
Node oldlast = last;
last = new Node();
last.item = item;
last.next = null;
if (isEmpty())
first = last;
else

oldlast.next = last;
n++;

RUNNING TIME OF LINKED QUEUE OPERATIONS 25

dequeue(Item 1tem) in(doubly)linked queue is O(1) for worst case

public Item dequeue() {
1f (isEmpty())
throw new NoSuchElementException("Queue underflow");
Ttem item = first.item;
first = first.next;
n--;
1f (1sEmpty())
last = null;
return item;

RUNNING TIME OF LINKED QUEUE OPERATIONS

Queues as singly linked lists

» O(n) if only head pointer and have to enqueue at the tail.
» O(1) if we have a tail pointer.

» Simple modification in code, big gains!

» Version that textbook follows.

26

TODAY'S LECTURE IN A NUTSHELL

27

Lecture 14: Analysis of Algorithms Il

» Theory of Algorithms

» Running Time of Linked List operations

» Running Time of Linked Stack operations

» Running Time of Linked Queue operations
» Running Time of ArrayList operations

» Memory Consumption of Stacks

RUNNING TIME OF ARRAYLIST OPERATIONS 28

Worst-case performance of add() is O(n)

»Cost model: 1 for insertion, n for copying n items to a new array.
»Worst-case: If arraylist is full, add() will need to call resize to

create a new array of double the size, copy all items, insert new one.
»Total cost: n+ 1 = O(n).

»Realistically, this won’t be happening often and worst-case analysis
can be too strict. We will use amortized time analysis instead.

RUNNING TIME OF ARRAYLIST OPERATIONS

Amortized analysis

» Amortized cost per operation: for a sequence of n operations, it is

the total cost of operations divided by n.
»Simplest form of amortized analysis called aggregate method.
More complicated methods exist, such as accounting (banking)
and potential (physicist’s).

29

RUNNING TIME OF ARRAYLIST OPERATIONS 30

Amortized analysis for n add() operations

Insertion
Cost

Copying
Cost

Total
Cost

» As the arraylist increases, doubling happens half as often but costs twice as much.
» O(total cost)= Z(”cost of insertions”) + Z(”cost of copying”)

>Z(”cost of insertions”) = n.
>Z("cost of copying”) =1 +2 + 22 4 .. 2le?] <2y,

3n
» O(total cost) < 3n, therefore amortized costis < — = 3 = O(1), but “lumpy"”.
n

RUNNING TIME OF ARRAYLIST OPERATIONS 31

Amortized analysis for n add() operations when increasing arraylist by 1.

Insertion
Cost

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
s 4 s 6 7|8 9|10 u 1 13|14 15 16
4 5 6 7 8 9 10 11 12 13 14 15 16 17

>Z(”cost of insertions”) = n.

>Z(”cost of copying”)=1+2+3+...+n—-1=nn-1)/2.

» O(total cost) =n+nn—1)/2 =n(n+ 1)/2, therefore amortized cost is
(n+ 1)/2 or O(n).

*Same idea when increasing arraylist size by a constant.

Copying
Cost

Total
Cost

TODAY'S LECTURE IN A NUTSHELL

32

Lecture 14: Analysis of Algorithms Il

» Theory of Algorithms

» Running Time of Linked List operations

» Running Time of Linked Stack operations

» Running Time of Linked Queue operations
» Running Time of ArrayList operations

» Memory Consumption of Stacks

MEMORY CONSUMPTION OF STACKS 33

A (linked) stack with n items uses ~40n bytes

» 16 bytes (object overhead)

» 8 bytes (inner class overhead)

» 8 bytes (reference to an ltem)

» 8 bytes (reference to next node)
» Total: 40 bytes per stack Node

» This analysis does not take into consideration the size of the Item
objects.

ASSIGNED READINGS AND PRACTICE PROBLEMS

34

Readings:

» Textbook:
» Chapter 1.4 (pages 197-199)

» Website:

» Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

Practice Problems:

» 1.4.1,1.45-1.4.7,1.4.32,1.4.35-1.4.36.

https://algs4.cs.princeton.edu/14analysis/

