35062

DATA STRUCTURES AND ADVANCED PROGRAMMING

13: Analysis of Algorithms

&= Mark Kampe

" @ \ Alexandra Papoutsaki
: S | ABS

"B 7 Lecures

TODAY'S LECTURE IN A NUTSHELL

Lecture 13: Analysis of Algorithms

» Introduction

» Experimental Analysis of Running Time
» Mathematical Models of Running Time
» Order of Growth Classification

» Analysis of Memory Consumption

Some slides adopted from Algorithms 4th Edition or COS226

INTRODUCTION 3

Different Roles

You

Programmer Client Theoretician
needs a working solution Wants an efficient solution Wants to understand

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

INTRODUCTION

Why analyze algorithmic efficiency?

» Predict performance.

» Compare algorithms that solve the same problem.
» Provide guarantees.

» Understand theoretical basis.

» Avoid performance bugs.

Why is my program so slow?
Why does it run out of memory?

We can use a combination of experiments and mathematical modeling.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY'S LECTURE IN A NUTSHELL

Lecture 13: Analysis of Algorithms

» Introduction

» Experimental Analysis of Running Time
» Mathematical Models of Running Time
» Order of Growth Classification

» Analysis of Memory Consumption

EXPERIMENTAL ANALYSIS OF RUNNING TIME

» 3-SUM: Given n distinct numbers, how many unordered triplets sum to 0?

» Input: 30 -40 -20 -10 40 0 10 5
» Output: 4

» 30 -40 10

» 30 -20-10

»-40 40 O

»-10 0 10

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

» 3-SUM: brute-force algorithm

public class ThreeSum {

public static int count(int[] a) {
int n = a.length;
int count = 0;
for (int 1 =0; 1 < n; 1++) {
for (int J = 141;] < n; J++) {
for (int k = J+1; k < n; k++) {
if Ca[i] + a[j] + a[k] == @) {

count++;
}

, CODE AND DATA AVAILABLE IN THE ALGS4 WEBSITE
}

return count;
hy
public static void main(String[] args) {
int[] a = {30, -40, -20, -10, 40, 0, 10, 5}%;
Stopwatch timer = new Stopwatch();
int count = count(a);
System.out.println("elapsed time = " + timer.elapsedTime());
System.out.println(count);

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

» Empirical Analysis

» Input: 8ints.txt
» Qutput: 4 and 0

> Input: 1Kints.txt
» Qutput: 70 and 0.081

> Input: 2Kints.txt
» Output: 528 and 0.38

> Input: 2Kints.txt
» Qutput: 528 and 0.371

> Input: 4Kints.txt
» Output: 4039 and 2.792

> Input: 8Kints.txt
» Output: 32074 and 21.623

» Input: 16Kints.txt
» Output: 255181 and 177.344

Input size
8

Time
0

1000

0.081

2000

0.38

2000

0.371

4000

2.792

8000

21.623

16000

177.344

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

» Plots and log-log plots

Straight line of slope 3

T(n) logT(n)

100 ¢ 4

n logn
» Regression: T(n) = an®” (power-law).
» log T(n) = blogn + loga, b is slope.

» Experimentally: ~0.42 x 10™!%3, in our example for ThreeSum.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Ineut size Time

8 0
EXPERIMENTAL ANALYSIS OF RUNNING TIME — ST
2000 0.38
. . 4000 2792
» Doubling hypothesis 8000 21.623
16000 177.344
L . N I(n)
» Doubling input size increases running time by a factor of
T(n/2)
» Run program doubling the size of input. Estimate factor of growth:

T(n) an? .
, = —— =27
T(n/2) a(;)b

» E.g., in our example, for pair of input sizes 8000 and 16000 the

ratio is 8.2, therefore b is approximately 3.

» Assuming we know b, we can figure out a.
» E.g., in our example, T(16000) = 177.34 = a x 16000°.

» Solving for a we geta = 0.42 x 1071°.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME
» Practice Time

» Suppose you time your code and you make the following
observations. Which function is the closest model of 7(n)?

A. n?

B. 6 10™*n Input size Time

C. 5% 107°n? 1000 0

D. 7% 1077n? 2000 0.0
4000 0.1
3000 0.3
16000 1.3

32000 5.1

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME

» Answer

» C.5%x 107°n"
» Ratio is approximately 4, therefore b = 2.
» T(32000) = 5.1 = a x 32000~.

» Solving fora = 4.98 X 107™°.s Input size Time

1000 0
2000 0.0
4000 0.1
8000 0.3
16000 1.3

32000 5.1

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

EXPERIMENTAL ANALYSIS OF RUNNING TIME
» Effects on performance

» System independent effects: Algorithm + input data

» Determine b in power law relationships.

» System independent effects: Hardware (e.g., CPU, memory,
cache) + Software (e.g., compiler, garbage collector) + System
(E.g., operating system, network, etc).

» Dependent and independent effects determine a in power law
relationships.

» Although it is hard to get precise measurements, experiments in
Computer Science are cheap to run.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY'S LECTURE IN A NUTSHELL

14

Lecture 13: Analysis of Algorithms

» Introduction

» Experimental Analysis of Running Time
» Mathematical Models of Running Time
» Order of Growth Classification

» Analysis of Memory Consumption

MATHEMATICAL MODELS OF RUNNING TIME
» Total Running Time

» Popularized by Donald Knuth in the 60s in the four volumes of

“The Art of Computer Programming”.
» Knuth won the Turing Award (The “Nobel” in CS) in 1974.

» In principle, accurate mathematical models for performance of
algorithms are available.

» Total running time = sum of cost x frequency for all operations.
» Need to analyze program to determine set of operations.

» Exact cost depends on machine, compiler.

» Frequency depends on algorithm and input data.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

» Cost of basic operations

» Add < integer multiply < integer divide < floating-point add <
floating-point multiply < floating-point divide.

Operation Example Nanoseconds
Variable declaration 1nt a €1
Assignment statement a=>b &)
Integer comparison a<ph»on C3
Array element access al1] Cy
Array length a.length Cs
1D array allocation new int[n] Cell
2D array allocation new int[n][n] c7n2

string concatenation S+t Cgh

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

» Example: 1-SUM

» How many operations as a function of n?

1nt count = 0;
for (int 1 =0; 1 < n; 1++) {

if (ali] = 0) {

count++;
¥
h
Operation Frequency
Variable declaration 2
Assignment 2
Less than n+ 1
Equal to n
Array access n

Increment n to 2n

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

» Example: 2-SUM

» How many operations as a function of n?

1nt count = 0;
for (int 1 =0; 1 < n; 1++) {
for (int] = 1+1; J < n; J++) {
if Ca[i] + a[3] = @) {

, count+; BECOMING TOO TEDIOUS TO CALCULATE
h
; Operation Frequency
Variable declaration n+2
Assignment n+2
Less than 172(n+ 1)(n + 2)
Equal to 1/2n(n—1)
Array access nn—1)

Increment 1/2n(n+1) to n2

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

» Tilde notation

» Estimate running time (or memory) as a function of input size n.
» Ignore lower order terms.
» When n is large, lower order terms become negligible.

I I
» Example 1: —n” + 10n 4+ 100 ~ —n
6 6
L 2 I
» Example 2: En + 100n~ + 47 ~ gn
1 » 1/2 1
» Example 3: —n° + 10013 + — ~ —n
6 n 6
f(n)
y Technically f(n) ~ g(n) means that Ilm —— =1

n—co g(1)

MATHEMATICAL MODELS OF RUNNING TIME
» Simplification

» Cost model: Use some basic operation as proxy for running
time.
» E.g., array accesses
» Combine it with tilde notation.

Operation Frequency Tilde notation
Variable declaration n+2 ~n
Assignment n+2 ~Nn
Less than 1/2(n + D(n + 2) ~1/2n°
Equal to 1/2n(n — 1) ~1/2n?
Array access nn—1) ~ ?
Increment 12n(n+1) to n- ~1/2n? to ~n*
2

» ~n“ array accesses for the 2-SUM problem

MATHEMATICAL MODELS OF RUNNING TIME

» Back to the 3-SUM problem

» Approximately how many array accesses as a function of input size n?

int count = 0;
for (int 1 =0; 1 < n; 1++) {
for (int] = 1+1; J < n; J++) {
for (int k = J+1; k < n; k++) {
if Ca[i] + a[j] + a[k] == @) {

count++;
¥

}

1
) (;l) =nn-—1)(n-2)/6~ gn3 for each array access

1 3 1 3
» 3 X gl’l — En array accesses.

MATHEMATICAL MODELS OF RUNNING TIME

» Useful approximations for the analysis of algorithms

» Harmonicsum: H, =1+ 1/2+1/3+ ...+ 1/n~1nn
» Triangularsum: 1 +24+34+... 4+ n~n?/2

» Geometricsum: 1 4+24+44+8+...+n=2n—1~2n,whenn

power of 2.

nk

n
» Binomial coefficients: () ~ when k is a small constant.

» Use a tool like Wolfram alpha.

MATHEMATICAL MODELS OF RUNNING TIME

» Practice Time

» How many array accesses does the following code make?

1nt count = 0;
for (int 1 =0; 1 < n; 1++) {
for (int J = 1+1;] < n; J++) {
for (int k = 1; k < n; k=k*2) {
if Calil + a[3] >= alkD) {

count++;
}
}
}
A. 3n?
B. 3/2n*logn
C. 3/2n°

D. 3n’

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

MATHEMATICAL MODELS OF RUNNING TIME

» Answer

» 3/2n*logn

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY'S LECTURE IN A NUTSHELL

25

Lecture 13: Analysis of Algorithms

» Introduction

» Experimental Analysis of Running Time
» Mathematical Models of Running Time
» Order of Growth Classification

» Analysis of Memory Consumption

ORDER OF GROWTH CLASSIFICATION

» Order-of-growth

» Definition: If f(n)~cg(n) for some constant ¢ > 0, then the order
of growth of f(n) is g(n).
» Ignore leading coefficients.
» Ignore lower-order terms.

» We will use this definition in the mathematical analysis of the
running time of our programs as the coefficients depend on
the system.

» E.g., the order of growth of the running time of the ThreeSum

program is 11°.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ORDER OF GROWTH CLASSIFICATION

» Common order-of-growth classifications

» Good news: only a small number of function suffice to describe

the order-of-growth of typical algorithms.
l: constant

log n: logarithmic
n: linear

nlogn : linearithmic
n*: quadratic

n>: cubic

2": exponential

vV Vv VvV VvV VvV VvV VvV Vv

n!: factorial

Elements

bigocheatsheet.com

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ORDER OF GROWTH CLASSIFICATION

» Common order-of-growth classifications

Order-of-growth Name Typical code T(n)/T(n/2)

1 Constant a=b+c 1
logn Logarithmic while(n>1)Y{n=n/2;...} ~ 1
n Linear for(int i =O;}|<n;|++{ N
nlogn Linearithmic mergesort =)

2 , for(inti =0;i<n;i++)
Quadratic for(int j=0; j<n:j++)...} 4

for(inti =0;i<n;i++){
n’ Cubic for(int j=0; j<n;j++) 8

for(int k=0; k<n; k++X...}}}

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY'S LECTURE IN A NUTSHELL

29

Lecture 13: Analysis of Algorithms

» Introduction

» Experimental Analysis of Running Time
» Mathematical Models of Running Time
» Order of Growth Classification

» Analysis of Memory Consumption

ANALYSIS OF MEMORY CONSUMPTION

» Basics

» Bit: O or 1.

» Byte: 8 bits.

» Megabyte (MB): 22¥ bytes.
» Gigabyte: 2°Y bytes.

» We assume that a 64-bit machine has 8-byte pointers.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ANALYSIS OF MEMORY CONSUMPTION

» Typical memory usage for primitives and arrays

» boolean: 1 byte
» byte: 1 byte

» char: 2 bytes

» 1nt: 4 bytes

» float: 4 bytes

» Long: 8 bytes

» double: 8 byte

» Array overhead: 24 bytes
» char[]:2n+24

» 1nt[]:4n+24
» double[]:8n+24

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ANALYSIS OF MEMORY CONSUMPTION
» Typical memory usage for objects

» Object overhead: 16 bytes
» Reference: 8 bytes
» Padding: padded to be a multiple of 8 bytes
» Example:
» public class Date {
private int day;
private int month;
private int year;
¥
» 16 bytes overhead + 3x4 bytes for ints + 4 bytes padding =
32 bytes

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ANALYSIS OF MEMORY CONSUMPTION

» Practice Time

» How much memory does WeightedQuickUn1ionUF use as a function of n?

public class WeightedQuickUnionUF{
private int[] parent;
private int[] size;
private int count;

public WeightedQuickUnionUF(int n) {
parent = new int[n];
size = new int[n];
count = 0;

~4n bytes
~8n bytes
~4n® bytes
~8n? bytes

0w P>

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

ANALYSIS OF MEMORY CONSUMPTION

» Answer

B. ~8n bytes

» 16 bytes for object overhead

» Each array: 8 bytes for reference + 24 overhead + 4n for
Integers

» 4 bytes for int

» 4 bytes for padding

» Total 88 + 8n ~ 8n

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY'S LECTURE IN A NUTSHELL

35

Lecture 13: Analysis of Algorithms

» Introduction

» Experimental Analysis of Running Time
» Mathematical Models of Running Time
» Order of Growth Classification

» Analysis of Memory Consumption

ASSIGNED READINGS AND PRACTICE PROBLEMS

36

Readings:

» Textbook:
» Chapter 1.4 (pages 172-196, 200-205)

» Website:

» Analysis of Algorithms: https://algs4.cs.princeton.edu/14analysis/

Practice Problems:

» 1.4.1-1.4.9

https://algs4.cs.princeton.edu/14analysis/

