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Some slides adopted from Algorithms 4th Edition and Oracle tutorials



STACKS

Stacks
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‣ Dynamic linear data structures. 
‣ Items are inserted and removed following the LIFO paradigm. 
‣ LIFO: Last In, First Out. 
‣ Similar to lists, there is a sequential nature to the data. 
‣ Unlike lists, remove the most recent item. 

‣ Metaphor of cafeteria plate dispenser. 
‣ Want a plate? Pop the top plate. 
‣ Add a plate? Push it to make it the new top. 
‣ Want to see the top plate? Peek. 
‣ We want to make push and pop as time efficient as possible

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Example of stack operations
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push To be or not to - be - - that - - - is

pop to be not that or be
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STACKS

Implementing stacks with ArrayLists
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‣ Where should the top go to make push and pop as efficient as 
possible? 

‣ The end/rear represents the top of the stack. 
‣ To push an item add(). 
‣ To pop an item remove(size()-1).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementing stacks with singly linked lists
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‣ Where should the top go to make push and pop as efficient as 
possible? 

‣ The front represents the top of the stack. 
‣ To push an item add(). 
‣ To pop an item remove().

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Implementing stacks with doubly linked lists
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‣ Where should the top go to make push and pop as efficient as 
possible? 

‣ The front represents the top of the stack. 
‣ To push an item addFirst(). 
‣ To pop an item removeFirst(). 
‣ Unnecessary memory overhead with extra pointers. 

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


STACKS

Textbook implementation of stacks

�8

  

‣ ResizingArrayStack.java: for implementation of stacks 
with ArrayLists.  

‣ LinkedStack.java: for implementation of stacks with singly 
linked lists.  

‣ Make sure to check the code!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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QUEUES

Queues
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‣ Dynamic linear data structures. 
‣ Items are inserted and removed following the FIFO paradigm. 
‣ FIFO: First In, First Out. 
‣ Similar to lists, there is a sequential nature to the data. 
‣ Unlike lists, remove the least recent item. 

‣ Metaphor of a line of people waiting to buy tickets. 
‣ Just arrived? Enqueue person to the end of line. 
‣ First to arrive? Dequeue person at the top of line. 
‣ We want to make enqueue and dequeue as time efficient as 

possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Example of stack operations
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enqueue To be or not to - be - - that - - - is

dequeue To be or not to be
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https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Implementing queue with ArrayLists

�12

  

‣ Where should we enqueue and dequeue items? 
‣ To enqueue an item add() at the end of arrayList (cheap). 
‣ To dequeue an item remove(0) (expensive). 
‣ What if we add at the beginning and remove from end? 
‣ Now remove is cheap but add becomes expensive.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Implementing queue with singly linked list
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‣ Where should we enqueue and dequeue items? 
‣ To enqueue an item add() at the head of SLL (cheap). 
‣ To dequeue an item remove(size()-1) (expensive). 
‣ What if we add at the beginning and remove from end? 
‣ Now remove is cheap but add becomes expensive.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Implementing queue with doubly linked list
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‣ Where should we enqueue and dequeue items? 
‣ To enqueue an item addFirst() at the head of DLL (cheap). 
‣ To dequeue an item removeLast() (cheap). 
‣ What if we add at the beginning and remove from end? 
‣ Both are cheap!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


QUEUES

Textbook implementation of queues
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‣ ResizingArrayQueue.java: for implementation of queues 
with ArrayLists.  

‣ LinkedQueue.java: for implementation of queues with 
singly linked lists.  

‣ Make sure to check the code!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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APPLICATIONS

Stack applications
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‣ Java Virtual Machine. 
‣ Basic mechanisms in compilers, interpreters (see CS101). 
‣ Back button in browser. 
‣ Undo in word processor. 
‣ Infix expression evaluation (Dijskstra’s algorithm with two 

stacks). 
‣ Postfix expression evaluation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


APPLICATIONS

Infix expression evaluation example
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https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


APPLICATIONS

Postfix expression evaluation example

�19

  

Example: (52 - ((5 + 7) * 4) ⇒ 52 5 7 + 4 * -

7
→ → →

5                 5

52 push(52) 52            push(5) 52 push(7)

v1=pop()=7                             4           v1=pop()=4

12 v2=pop()=5          → 12                           → 48          v2=pop()=12

52         push(v2+v1)=push(12)          52          push(4)                     52          push(v2*v1)=48  

   

                 v1=pop()=48
                 v2=pop()=52                →            peek()=4 
       4        push(v2-v1)=4

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html


APPLICATIONS

Queue applications
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‣ Spotify playlist. 
‣ Data buffers (netflix, Hulu, etc.). 
‣ Asynchronous data transfer (file I/O, sockets). 
‣ Requests in shared resources (printers). 
‣ Traffic analysis. 
‣ Waiting times at calling center.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
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JAVA COLLECTIONS

The Java Collections Framework
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 https://en.wikipedia.org/wiki/Java_collections_framework  

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework


JAVA COLLECTIONS

Deque in Java Collections
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https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Do not use Stack.  

▸ Queue is an interface…  

▸ It’s recommended to use Deque instead.  

▸ Double-ended queue (can add and remove from either end). 

java.util.Deque;

public interface Deque<E> extends Queue<E>
▸ You can choose between LinkedList and ArrayDeque 

implementations. 

▸Deque deque = new ArrayDeque(); //preferable

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
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ITERATORS

Iterator Interface
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https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Interface that allows us to traverse a collection one 
element at a time. 

public interface Iterator<E> { 
  //returns true if the iteration has more elements
  //that is if next() would return an element instead of throwing an exception
  boolean hasNext(); 
  
  //returns the next element in the iteration
  //post: advances the iterator to the next value
  E next(); 
  
  //removes the last element that was returned by next
  default void remove(); //optional, better avoid it altogether 
}

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html


ITERATORS

Iterator Example
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List<String> myList = new ArrayList<String>();
//… operations on myList

Iterator listIterator = myList.iterator(); 

while(listIterator.hasNext()){ 
  String elt = listIterator.next();  
  System.out.println(elt); 
}



ITERATORS

Java8 introduced lambda expressions
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‣Iterator interface now contains a new method.  

‣default void forEachRemaining(Consumer<? super E> action)  

‣Performs the given action for each remaining element until all elements have been 
processed or the action throws an exception. 

listIterator.forEachRemaining(System.out::println);



ITERATORS

Iterable Interface

�28

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ Interface that allows an object to be the target of a for-each loop: 

for(String elt: myList){ 
  System.out.println(elt); 
}

interface Iterable<E>{
  //returns an iterator over elements of type E
  Iterator<E> iterator();

  //Performs the given action for each element of the Iterable until all elements 
have  
  //been processed or the action throws an exception.

  default void forEach(Consumer<? super E> action);

}
myList.forEach(elt-> {System.out.println(elt)});  
myList.forEach(System.out::println);

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html


ITERATORS

How to make your data structures iterable?

1. Implement Iterable interface. 

2. Make a private class that implements the Iterator 
interface.  

3. Override iterator() method to return an instance of 
the private class.



ITERATORS

Example: making ArrayList iterable

public class ArrayList<Item> implements Iterable<Item> {
     //…

public Iterator<Item> iterator() {

return new ArrayListIterator();  
     }

private class ArrayListIterator implements Iterator<Item> {

private int i = 0;

public boolean hasNext() {
              return i < n;

}

public Item next() {

return a[i++];

}

public void remove() {
               throw new UnsupportedOperationException();

}

}



ITERATORS

Traversing ArrayList

‣ All valid  ways to traverse ArrayList and print its elements one by one. 

      for(String elt:a1) {
System.out.println(elt);

}

a1.forEach(System.out::println);
a1.forEach(elt->{System.out.println(elt);});

a1.iterator().forEachRemaining(System.out::println);
a1.iterator().forEachRemaining(elt->{System.out.println(elt);});
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ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides: 

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html 

▸ Deque: https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html 

▸ Iterator: https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html 

▸ Iterable: https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html 

▸ Textbook: 

▸ Chapter 1.3 (Page 126–157) 

▸ Website: 

▸ Stacks and Queues: https://algs4.cs.princeton.edu/13stacks/
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Practice Problems:

▸ 1.3.2–1.3.8, 1.3.32–1.3.33

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://algs4.cs.princeton.edu/13stacks/

