
CS062
DATA STRUCTURES AND ADVANCED PROGRAMMING

12: Stacks, Queues and Iterators

Alexandra Papoutsaki 
LECTURES

Mark Kampe 
LABS

Some slides adopted from Princeton C0S226 course or Algorithms, 4th Edition

BASIC DATA STRUCTURES

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

�2

Some slides adopted from Algorithms 4th Edition and Oracle tutorials

STACKS

Stacks

�3

‣ Dynamic linear data structures.
‣ Items are inserted and removed following the LIFO paradigm.
‣ LIFO: Last In, First Out.
‣ Similar to lists, there is a sequential nature to the data.
‣ Unlike lists, remove the most recent item.

‣ Metaphor of cafeteria plate dispenser.
‣ Want a plate? Pop the top plate.
‣ Add a plate? Push it to make it the new top.
‣ Want to see the top plate? Peek.
‣ We want to make push and pop as time efficient as possible

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Example of stack operations

�4

push To be or not to - be - - that - - - is

pop to be not that or be

To

be

To
be
or

To
be
or
not

To
be
or
not
to

To
be
or
not

To
be
or
not

To
be
or
not

To
be
or

To
be
or
that

To
be
or

To
be

To To
is

To
be

push to top pop from top

Out
First
In
Last

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementing stacks with ArrayLists

�5

‣ Where should the top go to make push and pop as efficient as
possible?

‣ The end/rear represents the top of the stack.
‣ To push an item add().
‣ To pop an item remove(size()-1).

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementing stacks with singly linked lists

�6

‣ Where should the top go to make push and pop as efficient as
possible?

‣ The front represents the top of the stack.
‣ To push an item add().
‣ To pop an item remove().

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Implementing stacks with doubly linked lists

�7

‣ Where should the top go to make push and pop as efficient as
possible?

‣ The front represents the top of the stack.
‣ To push an item addFirst().
‣ To pop an item removeFirst().
‣ Unnecessary memory overhead with extra pointers.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

STACKS

Textbook implementation of stacks

�8

‣ ResizingArrayStack.java: for implementation of stacks
with ArrayLists.

‣ LinkedStack.java: for implementation of stacks with singly
linked lists.

‣ Make sure to check the code!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

�9

QUEUES

Queues

�10

‣ Dynamic linear data structures.
‣ Items are inserted and removed following the FIFO paradigm.
‣ FIFO: First In, First Out.
‣ Similar to lists, there is a sequential nature to the data.
‣ Unlike lists, remove the least recent item.

‣ Metaphor of a line of people waiting to buy tickets.
‣ Just arrived? Enqueue person to the end of line.
‣ First to arrive? Dequeue person at the top of line.
‣ We want to make enqueue and dequeue as time efficient as

possible.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Example of stack operations

�11

enqueue To be or not to - be - - that - - - is

dequeue To be or not to be

To

be

or
be
To

not
or
be
To

to be
to
not
or

be
to
not

that
be
that that is

that
be
To

dequeue from beginning

enqueue at end

Out
First
In

First

not
or
be
To

not
or
be

to be
to
not
or

be
to
not

be
to

that

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Implementing queue with ArrayLists

�12

‣ Where should we enqueue and dequeue items?
‣ To enqueue an item add() at the end of arrayList (cheap).
‣ To dequeue an item remove(0) (expensive).
‣ What if we add at the beginning and remove from end?
‣ Now remove is cheap but add becomes expensive.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Implementing queue with singly linked list

�13

‣ Where should we enqueue and dequeue items?
‣ To enqueue an item add() at the head of SLL (cheap).
‣ To dequeue an item remove(size()-1) (expensive).
‣ What if we add at the beginning and remove from end?
‣ Now remove is cheap but add becomes expensive.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Implementing queue with doubly linked list

�14

‣ Where should we enqueue and dequeue items?
‣ To enqueue an item addFirst() at the head of DLL (cheap).
‣ To dequeue an item removeLast() (cheap).
‣ What if we add at the beginning and remove from end?
‣ Both are cheap!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

QUEUES

Textbook implementation of queues

�15

‣ ResizingArrayQueue.java: for implementation of queues
with ArrayLists.

‣ LinkedQueue.java: for implementation of queues with
singly linked lists.

‣ Make sure to check the code!

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

�16

APPLICATIONS

Stack applications

�17

‣ Java Virtual Machine.
‣ Basic mechanisms in compilers, interpreters (see CS101).
‣ Back button in browser.
‣ Undo in word processor.
‣ Infix expression evaluation (Dijskstra’s algorithm with two

stacks).
‣ Postfix expression evaluation.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

APPLICATIONS

Infix expression evaluation example

�18

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

APPLICATIONS

Postfix expression evaluation example

�19

Example: (52 - ((5 + 7) * 4) ⇒ 52 5 7 + 4 * -

7
→ → →

5 5

52 push(52) 52 push(5) 52 push(7)

v1=pop()=7 4 v1=pop()=4

12 v2=pop()=5 → 12 → 48 v2=pop()=12

52 push(v2+v1)=push(12) 52 push(4) 52 push(v2*v1)=48

  

 v1=pop()=48
 v2=pop()=52 → peek()=4
 4 push(v2-v1)=4

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

APPLICATIONS

Queue applications

�20

‣ Spotify playlist.
‣ Data buffers (netflix, Hulu, etc.).
‣ Asynchronous data transfer (file I/O, sockets).
‣ Requests in shared resources (printers).
‣ Traffic analysis.
‣ Waiting times at calling center.

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

�21

JAVA COLLECTIONS

The Java Collections Framework

�22

 https://en.wikipedia.org/wiki/Java_collections_framework

https://docs.oracle.com/javase/tutorial/essential/exceptions/definition.html
https://en.wikipedia.org/wiki/Java_collections_framework

JAVA COLLECTIONS

Deque in Java Collections

�23

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Do not use Stack.

▸ Queue is an interface…

▸ It’s recommended to use Deque instead.

▸ Double-ended queue (can add and remove from either end).

java.util.Deque;

public interface Deque<E> extends Queue<E>
▸ You can choose between LinkedList and ArrayDeque

implementations.

▸Deque deque = new ArrayDeque(); //preferable

https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

�24

ITERATORS

Iterator Interface

�25

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Interface that allows us to traverse a collection one
element at a time.

public interface Iterator<E> {
 //returns true if the iteration has more elements
 //that is if next() would return an element instead of throwing an exception
 boolean hasNext();

 //returns the next element in the iteration
 //post: advances the iterator to the next value
 E next();

 //removes the last element that was returned by next
 default void remove(); //optional, better avoid it altogether
}

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

ITERATORS

Iterator Example

�26

List<String> myList = new ArrayList<String>();
//… operations on myList

Iterator listIterator = myList.iterator();

while(listIterator.hasNext()){
 String elt = listIterator.next();
 System.out.println(elt);
}

ITERATORS

Java8 introduced lambda expressions

�27

‣Iterator interface now contains a new method.  

‣default void forEachRemaining(Consumer<? super E> action)  

‣Performs the given action for each remaining element until all elements have been
processed or the action throws an exception.

listIterator.forEachRemaining(System.out::println);

ITERATORS

Iterable Interface

�28

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ Interface that allows an object to be the target of a for-each loop:

for(String elt: myList){
 System.out.println(elt);
}

interface Iterable<E>{
 //returns an iterator over elements of type E
 Iterator<E> iterator();

 //Performs the given action for each element of the Iterable until all elements
have  
 //been processed or the action throws an exception.

 default void forEach(Consumer<? super E> action);

}
myList.forEach(elt-> {System.out.println(elt)});  
myList.forEach(System.out::println);

https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

ITERATORS

How to make your data structures iterable?

1. Implement Iterable interface.

2. Make a private class that implements the Iterator
interface.

3. Override iterator() method to return an instance of
the private class.

ITERATORS

Example: making ArrayList iterable

public class ArrayList<Item> implements Iterable<Item> {
 //…

public Iterator<Item> iterator() {

return new ArrayListIterator();  
 }

private class ArrayListIterator implements Iterator<Item> {

private int i = 0;

public boolean hasNext() {
 return i < n;

}

public Item next() {

return a[i++];

}

public void remove() {
 throw new UnsupportedOperationException();

}

}

ITERATORS

Traversing ArrayList

‣ All valid ways to traverse ArrayList and print its elements one by one.

 for(String elt:a1) {
System.out.println(elt);

}

a1.forEach(System.out::println);
a1.forEach(elt->{System.out.println(elt);});

a1.iterator().forEachRemaining(System.out::println);
a1.iterator().forEachRemaining(elt->{System.out.println(elt);});

TODAY’S LECTURE IN A NUTSHELL

Lecture 12: Stacks, Queues, and Iterators

▸ Stacks

▸ Queues

▸ Applications

▸ Java Collections

▸ Iterators

�32

ASSIGNED READINGS AND PRACTICE PROBLEMS

Readings:

▸ Oracle’s guides:

▸ Collections: https://docs.oracle.com/javase/tutorial/collections/intro/index.html

▸ Deque: https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html

▸ Iterator: https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html

▸ Iterable: https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html

▸ Textbook:

▸ Chapter 1.3 (Page 126–157)

▸ Website:

▸ Stacks and Queues: https://algs4.cs.princeton.edu/13stacks/

�33

Practice Problems:

▸ 1.3.2–1.3.8, 1.3.32–1.3.33

https://docs.oracle.com/javase/tutorial/collections/intro/index.html
https://docs.oracle.com/javase/8/docs/api/java/util/Deque.html
https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Iterable.html
https://algs4.cs.princeton.edu/13stacks/

