Lecture 9: More Sorting

CS 62

Fall 2018
Alexandra Papoutsaki & William Devanny

Assignment 3

* What to do when you want to sort data that cannot fit in
memory of your computer?

* On-disk sorting

* Break data into chunks that will fit in memory, sort chunks,
copy into new files: @.tempfile, 1.tempfile, ...

« Keep ArraylList of files
* Merge files together until one big sorted file.
* Note: You can't keep file open as both read and write!

Assignment 3 and Lab 3

* Read info on File I/O in Java and file systems in appendix to
assignment.

e See on-line Streams cheat sheet

« Lab 3: More complexity/timing (sorting)

Merge Sort

« Example of Divide & Conquer algorithm

« Divide array in half
« Sort each half
« Merge halves together into completely sorted array

* Needs extra space (not in-place)

« Stable: two objects with equal keys appear in the same order
in sorted output as they appear in the input unsorted array.

MergeSort

/**
* MergeSort Sorts data >= low and < high
* @param 1ist data to be sorted
* @param low start of the data to be sorted
* @param high end of the data to be sorted (exclusive)
*/
private void mergeSort(int[] data, int low, int high){
1fC high-low > 1){
int mid = low + Chigh-low)/2;
mergeSort(data, low, mid);

mergeSort(data, mid, high);
merge(data, low, mid, high);

}

/** Merge data >= low and < high into sorted data.
* Data >= low and < mid are 1in sorted order.
* Data >= mid and < high are also in sorted order
*/
public void merge(int[] data, int low, int mid, int high){
int[] temp = new int[high-low]; // make temporary array temp of size high-low
int k =0, 1 = low, j = mid;
while(1 < mid & j < high){
1f(data[1] <= datal[j]){
temp[k] = data[i];
1++;
}else{
temp[k] = datalj];
J++;

}

K++;
}
// copy over the remaining data on the low to mid side if there is some remaining.
// copy over the remaining data on the mid to high side if there is some remaining.
// Only one of these two while loops should actually execute
// copy the data back from temp to array

// copy over the remaining data on the low to mid side if there is some remaining.
while(i < mid){
temp[k] = data[1i];
K++;
1++;
}
// copy over the remaining data on the mid to high side if there is some remaining.
while(j < high){
temp[k] = datal[j];
k++;
J++;
}
// Only one of these two while loops should actually execute

// copy the data back from temp to array
for(int index = @; index < temp.length; index++){
data[index+low]=temp[index];

Example

Sort: 85 24 6345 17 31 96 50 (whiteboard)

Correctness

e P(n): If high — low = n then mergeSort(data, low, high) will
resultin data[low .high] being correctly sorted

* For simplicity, assume merge is correct
 Assume P(k) forall k < n, show P(n)
* Ifn = 0or1then (correctly) do nothing

e Assumen > 1

« Call mergeSort(data,low, mid) and mergeSort(data, mid + 1, high)
where mid = low + (hlgh — low)/2.

* Hencemid — low < n,high— (mid+1) < n
« By induction data[low..mid] and data[mid + 1..high] now sorted.

« call merge(data low, mid, C[gh) and, by assumption on merge,
data[low .. high] now sorted! Thus P(n) true.

Complexity

« Claim: mergeSortis O(nlogn)
 wherelogis base 2

« Merge of two lists of combined size n takes
< n—1comparisons.

« Think of merging[1,3,5,7] and [2,4,6,8]
e |fllevels:

. 201 Height Time per level
2 x N P o
e l=logn
n/2 o(n)
* lognlevels
« each taking 0(n) operations e o(n)
 O(n logn) in total

Total time: O(nlogn)

Complexity

P(m): if data has 2™ elements then mergesort makes
<m * 2™ total comparisons.

Assume P(k) for all k < 2™. Prove P(m)
P(0),P(1) clear. Show P(m)
Sort first half, second half, and then merge

Each half has size 2"/, = 2m~1 < 2™ so by induction, each
takes < (m — 1) * 2™~ comparisons

Therefore total number of comparisons in mergesort
<(m-1D*2"14+(m-1)+x2m1+2Mm-1)
=(m—-1)*2"+ Q2" =1 =m=*2M—-1<mx*2™m

Thus P(m) is true
If n = 2™ then mergeSort takes nlogn comparisons (m = logn).

