Lecture 9: More Sorting

CS 62

Fall 2018
Alexandra Papoutsaki \& William Devanny

Assignment 3

- What to do when you want to sort data that cannot fit in memory of your computer?
- On-disk sorting
- Break data into chunks that will fit in memory, sort chunks, copy into new files: 0.tempfile, 1.tempfile, ...
- Keep ArrayList of files
- Merge files together until one big sorted file.
- Note: You can't keep file open as both read and write!

Assignment 3 and Lab 3

- Read info on File I/O in Java and file systems in appendix to assignment.
- See on-line Streams cheat sheet
- Lab 3: More complexity/timing (sorting)

Merge Sort

- Example of Divide \& Conquer algorithm
- Divide array in half
- Sort each half
- Merge halves together into completely sorted array
- Needs extra space (not in-place)
- Stable: two objects with equal keys appear in the same order in sorted output as they appear in the input unsorted array.

MergeSort

```
/**
* MergeSort Sorts data >= low and < high
* @param list data to be sorted
* @param low start of the data to be sorted
* @param high end of the data to be sorted (exclusive)
*/
private void mergeSort(int[] data, int low, int high){
    if( high-low > 1 ){
        int mid = low + (high-low)/2;
        mergeSort(data, low, mid);
        mergeSort(data, mid, high);
        merge(data, low, mid, high);
        }
}
```

```
/** Merge data >= low and < high into sorted data.
* Data >= low and < mid are in sorted order.
* Data >= mid and < high are also in sorted order
*/
public void merge(int[] data, int low, int mid, int high){
int[] temp = new int[high-low]; // make temporary array temp of size high-low
int k = 0, i = low, j = mid;
while( i < mid && j < high ){
    if( data[i] <= data[j]){
        temp[k] = data[i];
        i++;
    }else{
        temp[k] = data[j];
        j++;
    }
    k++;
}
// copy over the remaining data on the low to mid side if there is some remaining.
// copy over the remaining data on the mid to high side if there is some remaining.
// Only one of these two while loops should actually execute
// copy the data back from temp to array
```

```
// copy over the remaining data on the low to mid side if there is some remaining.
while(i < mid){
    temp[k] = data[i];
    k++;
    i++;
}
// copy over the remaining data on the mid to high side if there is some remaining.
while(j < high){
    temp[k] = data[j];
    k++;
    j++;
}
// Only one of these two while loops should actually execute
// copy the data back from temp to array
for(int index = 0; index < temp.length; index++ ){
    data[index+low]=temp[index];
}
```


Example

Sort: 8524634517319650 (whiteboard)

Correctness

- $P(n)$: If high - low $=n$ then mergeSort(data,low,high) will result in data[low .. high] being correctly sorted
- For simplicity, assume merge is correct
- Assume $P(k)$ for all $k<n$, show $P(n)$
- If $n=0$ or 1 then (correctly) do nothing
- Assume $n>1$
- Call mergeSort(data, low, mid) and mergeSort(data, mid +1 ,high) where mid $=$ low $+($ high - low $) / 2$.
- Hence mid - low $<n$, high $-($ mid +1$)<n$
- By induction data[low.. mid] and data[mid +1 ..high] now sorted.
- call merge(data, low, mid, high) and, by assumption on merge, data[low .. high] now sorted! Thus $P(n)$ true.

Complexity

- Claim: mergeSort is $O(n \log n)$
- where log is base 2
- Merge of two lists of combined size n takes
$\leq n-1$ comparisons.
- Think of merging $[1,3,5,7]$ and $[2,4,6,8]$
- If l levels:
- $n / 2^{l}=1$
- $n=2^{l}$
- $l=\log n$
- $\log n$ levels
- each taking $O(n)$ operations
- $O(n \log n)$ in total

Complexity

- $\quad P(m)$: if data has 2^{m} elements then mergesort makes $<m * 2^{m}$ total comparisons.
- Assume $P(k)$ for all $k<2^{m}$. Prove $P(m)$
- $\quad P(0), P(1)$ clear. Show $P(m)$
- Sort first half, second half, and then merge
- Each half has size $2^{m} / 2^{m-1}<2^{m}$, so by induction, each takes $<(m-1) * 2^{m-1}$ comparisons
- Therefore total number of comparisons in mergesort

$$
\begin{aligned}
& <(m-1) * 2^{m-1}+(m-1) * 2^{m-1}+\left(2^{m}-1\right) \\
& =(m-1) * 2^{m}+\left(2^{m}-1\right)=m * 2^{m}-1<m * 2^{m}
\end{aligned}
$$

- Thus $P(m)$ is true
- If $n=2^{m}$ then mergeSort takes $n \log n$ comparisons $(m=\log n)$.

