
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 9: More Sorting

Assignment 3

• What to do when you want to sort data that cannot fit in
memory of your computer?
• On-disk sorting

• Break data into chunks that will fit in memory, sort chunks,
copy into new files: 0.tempfile, 1.tempfile , …

• Keep ArrayList of files
• Merge files together until one big sorted file.
• Note: You can’t keep file open as both read and write!

2

Assignment 3 and Lab 3

• Read info on File I/O in Java and file systems in appendix to
assignment.

• See on-line Streams cheat sheet

• Lab 3: More complexity/timing (sorting)

3

Merge Sort

• Example of Divide & Conquer algorithm
• Divide array in half
• Sort each half
• Merge halves together into completely sorted array

• Needs extra space (not in-place)
• Stable: two objects with equal keys appear in the same order

in sorted output as they appear in the input unsorted array.

4

MergeSort

/**
* MergeSort Sorts data >= low and < high
* @param list data to be sorted
* @param low start of the data to be sorted
* @param high end of the data to be sorted (exclusive)
*/
private void mergeSort(int[] data, int low, int high){

if(high-low > 1){
int mid = low + (high-low)/2;
mergeSort(data, low, mid);
mergeSort(data, mid, high);
merge(data, low, mid, high);

}
}

5

/** Merge data >= low and < high into sorted data.
* Data >= low and < mid are in sorted order.
* Data >= mid and < high are also in sorted order
*/
public void merge(int[] data, int low, int mid, int high){
int[] temp = new int[high-low]; // make temporary array temp of size high-low
int k = 0, i = low, j = mid;
while(i < mid && j < high){

if(data[i] <= data[j]){
temp[k] = data[i];
i++;

}else{
temp[k] = data[j];
j++;

}
k++;

}
// copy over the remaining data on the low to mid side if there is some remaining.
// copy over the remaining data on the mid to high side if there is some remaining.
// Only one of these two while loops should actually execute
// copy the data back from temp to array

6

// copy over the remaining data on the low to mid side if there is some remaining.
while(i < mid){

temp[k] = data[i];
k++;
i++;

}
// copy over the remaining data on the mid to high side if there is some remaining.
while(j < high){

temp[k] = data[j];
k++;
j++;

}
// Only one of these two while loops should actually execute

// copy the data back from temp to array
for(int index = 0; index < temp.length; index++){

data[index+low]=temp[index];
}

7

Example

Sort: 85 24 63 45 17 31 96 50 (whiteboard)

8

Correctness

• 𝑃(𝑛): If ℎ𝑖𝑔ℎ	 − 	𝑙𝑜𝑤	 = 	𝑛		then 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡(𝑑𝑎𝑡𝑎, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ)	will
result in 𝑑𝑎𝑡𝑎[𝑙𝑜𝑤	. . ℎ𝑖𝑔ℎ]	being correctly sorted
• For simplicity, assume 𝑚𝑒𝑟𝑔𝑒	is correct
• Assume 𝑃(𝑘)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘	 < 	𝑛, show 𝑃(𝑛)
• If 𝑛 = 0	or 1 then (correctly) do nothing
• Assume 𝑛	 > 	1
• Call 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡(𝑑𝑎𝑡𝑎, 𝑙𝑜𝑤,𝑚𝑖𝑑) and 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡(𝑑𝑎𝑡𝑎,𝑚𝑖𝑑 + 1, ℎ𝑖𝑔ℎ)

where 𝑚𝑖𝑑	 = 	𝑙𝑜𝑤	 +	(ℎ𝑖𝑔ℎ	 − 	𝑙𝑜𝑤)/2.
• Hence 𝑚𝑖𝑑 − 𝑙𝑜𝑤	 < 	𝑛, ℎ𝑖𝑔ℎ − 𝑚𝑖𝑑 + 1 < 	𝑛
• By induction 𝑑𝑎𝑡𝑎[𝑙𝑜𝑤. .𝑚𝑖𝑑] and 𝑑𝑎𝑡𝑎[𝑚𝑖𝑑 + 1	. . ℎ𝑖𝑔ℎ]	now sorted.
• call 𝑚𝑒𝑟𝑔𝑒(𝑑𝑎𝑡𝑎, 𝑙𝑜𝑤,𝑚𝑖𝑑, ℎ𝑖𝑔ℎ) and, by assumption on 𝑚𝑒𝑟𝑔𝑒,

𝑑𝑎𝑡𝑎[𝑙𝑜𝑤	. . ℎ𝑖𝑔ℎ]	now sorted! Thus 𝑃(𝑛) true.

9

Complexity

• Claim: 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡	is 𝑂 𝑛 log 𝑛
• where log	is base 2

• Merge of two lists of combined size 𝑛 takes
≤ 𝑛 − 1	comparisons.
• Think of merging [1,3,5,7] and [2,4,6,8]

• If 𝑙 levels:
• 𝑛/2G=1
• 𝑛 = 2G
• 𝑙 = log 𝑛

• log 𝑛 levels
• each taking 𝑂(𝑛) operations
• 𝑂(𝑛	 log 𝑛) in total

10

Complexity

• 𝑃(𝑚): if data has 2H elements then 𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡	makes
< 𝑚	 ∗	2H	total comparisons.

• Assume 𝑃(𝑘)	𝑓𝑜𝑟	𝑎𝑙𝑙	𝑘	 < 	2H. Prove 𝑃(𝑚)
• 𝑃(0), 𝑃(1) clear. Show 𝑃 𝑚
• Sort first half, second half, and then merge
• Each half has size KL K⁄ = 2HNO < 2H, so by induction, each

takes < 𝑚 − 1 ∗ 2HNO	comparisons
• Therefore total number of comparisons in 𝑚𝑒𝑟𝑔𝑒𝑠𝑜𝑟𝑡

< 𝑚 − 1 ∗ 2HNO + 𝑚 − 1 ∗ 2HNO + 2H − 1
= 𝑚 − 1 ∗ 2H + 2H − 1 = 𝑚 ∗ 2H − 1 < 𝑚 ∗ 2H

• Thus 𝑃(𝑚)	is true
• If 𝑛 = 2H then 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡	takes 𝑛 log 𝑛	comparisons (𝑚	 = 	log	𝑛).

11

