
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 7: Analysis of
Algorithms

Order of Magnitude

• Definition: We say that f(𝑛)	is 𝑂(𝑔(𝑛))	iff there exist two
constants 𝐶 and	𝑘	such that

𝑓 𝑛 <= 	𝐶	 𝑔 𝑛 , 𝑓𝑜𝑟	𝑎𝑙𝑙	𝑛	 > 	𝑘.

• Used to measure time and space complexity of algorithms
on data structures of size 𝑛.

• Examples:
• 2𝑛 + 1 is 𝑂(𝑛)
• 𝑛3 − 𝑛2 + 83	is 𝑂(𝑛9)
• 2𝑛 + 𝑛2	is 𝑂(2:)

2

Order of Magnitude

• Most common are:
• 𝑂(1)	- constant
• 𝑂(log 𝑛) – logarithmic
• 𝑂(𝑛) – linear
• 𝑂(𝑛>) – quadratic
• 𝑂(𝑛?) – polynomial
• 𝑂(𝑐:) – exponential
• 𝑂(𝑛!) – factorial

• Growth:
• 𝑂 1 , 𝑂 log	𝑛 , 𝑂 𝑛 , 𝑂 𝑛	log	𝑛 , 𝑂 𝑛2 , 𝑂 2𝑛 , 𝑂(𝑛!),𝑂(𝑛:)

3

Complexity

4

Asymptotic Analysis

5

84 Design Fundamentals

2 2

log()nnn!

3

sqrt()

1

0
0 1 2 3 4 5

4

5

n

n n

nlog()

2
n

Figure 5.2 Near-origin details of common curves. Compare with Figure 5.3.

2

2

n!

log()nn

sqrt()n
log()n

n

60

40

20

80

100

0
0 20 40 60 80 100

n

n

Figure 5.3 Long-range trends of common curves. Compare with Figure 5.2.

Comparing Orders of Magnitude

• Suppose we have the operations with complexities given
and that a problem of size 𝑛 takes time 𝑡.

• How long would it take if we increase size of problem?

6

Problem Size: 10 n 100n 1000n

O(log n) 3+t 7 + t 10+ t

O(n) 10 t 100 t 1000 t

O(n log n) > 10 t > 100 t > 1000 t

O(n2) 100 t 10,000 t 1,000,000 t

O(2n) ~ t10 ~ t100 ~ t1000

Rule of thumb

7bigocheatsheet.com

Adding to ArrayList
• Suppose there are 𝑛 elements in ArrayList and you want

to add one more. What is the cost of this operation?

• If enough space (size<capacity):
• Add to end is 𝑂(1)	
• Add to beginning is 𝑂 𝑛

• If not space:
• What is the cost of ensureCapacity?
• 𝑂(𝑛)	because 𝑛 elements in array

8

Amortized Time Analysis

9

0 1 2 3 75 64 8 9 10 131211 14 15

O(1)

O(n)

As the arraylist increases in size, the doubling happens half as often but costs twice as much

16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 0 4 0 0 0 8 0 0 0 0 0 0 0
Copying
Cost 16

1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1
Total
Cost 17

Amortized Time Analysis

We will use the aggregate method – the simplest method for amortized time
analysis

Others: accounting (banker’s) and potential (physicist’s).

Think of it as an average. For a total of 𝑛 operations: 𝑂(total cost)	/	(number of
operations) (in this case additions)

𝑂(total cost of operations)=	∑ cost of insertions	�
� + ∑ cost of copying�

�

Total cost of insertions: 𝑛 of them, each 𝑂(1) cost, therefore 𝑛𝑂(1) 	= 	𝑂(𝑛)
Total cost of copying: 1 + 2 + 2> + ⋯+ 2 GHIJ : ≤ 2𝑛	which is 𝑂(𝑛)
𝑂(total cost) = 𝑂(𝑛) 	+ 	𝑂(𝑛) 	= 	𝑂(𝑛)
Amortized time = 𝑂(𝑛)/𝑛	 = 	𝑂(1) but “lumpy”

10

EnsureCapacity
• What if we only increase the capacity by 1 element each

time?
• Adding 𝑛 elements one at a time to end

• Total cost of 𝑛 insertions: 1 + 2 + 3 +⋯+ (𝑛 − 1) 	= 	𝑛(𝑛 − 1)/2
• Total cost of 𝑂(𝑛2)

• Average cost of each is 𝑂(𝑛)

11

0 1 2 3 75 64 8 9 10 131211 14 15 16

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Insertion
Cost 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Copying
Cost 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Total
Cost 17

ArrayList Operations

• Best case:
• 𝑂(1):	size(), isEmpty(), get(int i), set(int i, E

elet),	remove(), add()

• Worst case:
• 𝑂(1):	size(), isEmpty(), get(int i), set(int i, E

elet)
• 𝑂(𝑛):	remove, add()

• add() runs in amortized constant time: adding 𝑛 elements
requires 𝑂(𝑛) time.

12

Assignment

• WordStream: Reads text word by word
• Use nextToken() but make sure hasMoreTokens()

• Pair: of two elements
• StringPair
• Pair of Strings. Extends Pair

• Assume two associations <k,v>, <k’,v’>.
• Useful methods: get(i) and getValue()
• the equals method will return true iff the k and k’ are equal

• List
• indexOf(Object o) finds index of o in a list
• Return -1 if o not in list

13

FreqList

• list of associations holding words and their frequencies
• Instance variable List<Association<String, Integer>> flist
• Start with toString()
• Continue with add()
• What to check when adding?

14

In general…

• Work on paper first!
• More demanding than assignment 1. Start early!
• Come to office hours
• Don’t forget Friday’s quiz

15

