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Lecture 36: Graphs IV



Spanning Trees

• A spanning tree T of a graph G is a subset of the edges of G
such that: 
• T contains no cycles and
• Every vertex in G is connected to every other vertex using just the 

edges in T
• An unconnected graph has no spanning trees.
• A connected graph will have at least one spanning tree; it 

may have many
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Minimum Spanning Trees

• A weighted graph is a graph that has a weight associated 
with each edge. 

• If G is a weighted graph, the cost of a tree is the sum of the 
costs (weights) of its edges. 

• A tree T is a minimum spanning tree of G iff: 
• it is a spanning tree and
• there is no other spanning tree whose cost is lower than that of  T. 
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Minimum Spanning Trees

• Application:
• The cheapest way to lay cable that connects a set of points is along 

a minimum spanning tree that connects those points. 

• Many algorithms exist to find minimum spanning trees, most 
run in !(# log#) time. 

• In 1995 Karger, Klein & Tarjan found a linear time 
randomized algorithm, but there is no known linear time 
deterministic algorithm
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Kruskal’s Algorithm

• Create forest F with no edges, using vertices in V
• Sort the edges in the graph by their weight (smallest to 

largest)
• For each edge e in sorted order:
• if e connects two different trees in F , then add e to F
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Kruskal on sample graph

(1,2):1 
(2,3):2 
(4,5):3 
(6,7):3 
(1,4):4 
(2,5):4 
(4,7):4 
(3,5):5 
(2,4):6 
(3,6):6 
(5,7):7 
(5,6):8
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Kruskal’s Algorithm pseudocode
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A = {};
for(every vertex v in V) {

make-set(v)
for(every edge (u, v) ordered by increasing weight) {

if(find (u) != find (v)) {
A.add((u, v));
union(u, v);

}
}
return A;

make-set(v) - makes a set from a single vertex v
find(v) - finds the set that v belongs to
union(u, v) - makes the union of the sets containing u and v

Union-find structure



Union-Find Data Structure

keeps track of a set of elements partitioned into a number of 
disjoint subsets

Find: Find what subset an element belongs. Use to find if two 
elements belong in the same subset

Union: Create a single subset out of two subsets
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Practice Time
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Answer
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Graph Algorithms

• Very important in practice!
• Sophisticated data structures
• Careful analysis of correctness and complexity
• CS 140: Algorithms
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