
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 36: Graphs IV

Spanning Trees

• A spanning tree T of a graph G is a subset of the edges of G
such that:
• T contains no cycles and
• Every vertex in G is connected to every other vertex using just the

edges in T
• An unconnected graph has no spanning trees.
• A connected graph will have at least one spanning tree; it

may have many

2

Minimum Spanning Trees

• A weighted graph is a graph that has a weight associated
with each edge.

• If G is a weighted graph, the cost of a tree is the sum of the
costs (weights) of its edges.

• A tree T is a minimum spanning tree of G iff:
• it is a spanning tree and
• there is no other spanning tree whose cost is lower than that of T.

3

Minimum Spanning Trees

• Application:
• The cheapest way to lay cable that connects a set of points is along

a minimum spanning tree that connects those points.

• Many algorithms exist to find minimum spanning trees, most
run in !(# log#) time.

• In 1995 Karger, Klein & Tarjan found a linear time
randomized algorithm, but there is no known linear time
deterministic algorithm

4

Kruskal’s Algorithm

• Create forest F with no edges, using vertices in V
• Sort the edges in the graph by their weight (smallest to

largest)
• For each edge e in sorted order:
• if e connects two different trees in F , then add e to F

5

Kruskal on sample graph

(1,2):1
(2,3):2
(4,5):3
(6,7):3
(1,4):4
(2,5):4
(4,7):4
(3,5):5
(2,4):6
(3,6):6
(5,7):7
(5,6):8

6

1 2 3

4 5 6

7

4

1

6 4
6

8

5

3

4 3
7

2

(1,2):1
(2,3):2
(4,5):3
(6,7):3
(1,4):4
(2,5):4
(4,7):4
(3,5):5
(2,4):6
(3,6):6
(5,7):7
(5,6):8

7

1 2 3

4 5 6

7

4

1

6 4
6

8

5

3

4 3

2

7

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

4

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

4

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

4

1 2 3

4 5 6

7

1

6 4
6

8

5

3

4 3

2

7

4 4

Kruskal’s Algorithm pseudocode

8

A = {};
for(every vertex v in V) {

make-set(v)
for(every edge (u, v) ordered by increasing weight) {

if(find (u) != find (v)) {
A.add((u, v));
union(u, v);

}
}
return A;

make-set(v) - makes a set from a single vertex v
find(v) - finds the set that v belongs to
union(u, v) - makes the union of the sets containing u and v

Union-find structure

Union-Find Data Structure

keeps track of a set of elements partitioned into a number of
disjoint subsets

Find: Find what subset an element belongs. Use to find if two
elements belong in the same subset

Union: Create a single subset out of two subsets

9

Practice Time

10

Answer

11

Graph Algorithms

• Very important in practice!
• Sophisticated data structures
• Careful analysis of correctness and complexity
• CS 140: Algorithms

12

