Lecture 34: Graphs |l

CS 62

Fall 2018
Alexandra Papoutsaki & William Devanny

Number of Edges

 If|V| = n,then:
* minimum number of edges: 0
A graph can have only nodes

* For simple directed graphs, maximum number: n(n — 1)
n(n-1)

« Forsimple undirected graphs, maximum number:

* Dense graphs 2> #edges close to maximum
« Sparse graphs > #edges closeton

Graph Representations

* Adjacency Matrix
« Adjacency List

Adjacency Matrix

A B ¢ b « Good for dense graphs
A 0 1 1 1 « Constant time for lookup for edges.
B 1 0 0 1 « Constant time for adding/removing an edge
C 1 0 0 0 « Symmetric if undirected.
D 1 1 0 0 « Can hold weights.

Adjacency Lists

A » B » C
B » A » D
C » A

D > A »| B

« Good for sparse graphs, saves space.

* Lineartime lookup for edges.

v

Time complexity comparison

Store graph o(vI*) oVl +|ED)
Add vertex o(|V|?) 0(1)
Add edge 0(1) 0(1)
Remove vertex o(|V|® O(|E))
Remove edge 0(1) o(vD

Are two vertices adjacent? 0(1) oqvDh

Spanning Trees

* Tree: connected undirected graph with no cycles

« Spanning tree of G: includes every vertex of G and is a
subgraph of G (every edge belongs to G)

« Can have properties like minimum-cost
« Can be constructed by search algorithms

A Lo

Graph G 3 different spanning trees of graph G

Depth-First Search

» Explore the graph without revisiting nodes
* Depth-first means go until you hit a dead end, then back up

to branch out

e a Example from wikipedia g

Recursive DFS pseudocode

DFSCG, v){ @

visited[v] = true;

for(every edge (v,w)){
if(lvisited[w]){ e e e

DFS(G,w);

: ORGHC
¥

Orderofvisitt ABDFECG

Practice time

Orderofvist: ABSCDEHGF

Example graph from: https://www.youtube.com/watch?v=iaBEKo5sM7w 10

Non-recursive DFS pseudocode

for(every vertex v) @
visited[v]=false;

s=new Stack();

s.push(vl);
while(!s.isEmpty()) e e e
{

v = s.pop(Q);

if (Ivisited[v]) e G e
{

visited[v] = true;
for (every edge (v, w))
if (!visited[w])

s.push(w); Orderof visit AEFBDCG

11

Practice time

Orderof vist: ASGHECFDB

Example graph from: https://www.youtube.com/watch?v=iaBEKo5sM7w 12

Breadth-First Search

Replace stack with queue
Now we explore in order of distance from start

Algorithm:
1. Mark start vertex
2. Add all unmarked neighbors to queue and mark them

3. Repeat step 2 with next from queue until it's empty

13

BFS pseudocode

for(every vertex v) 6

visited[v]=false;
g=new Queue();

q.enqueue(vl);

while(!q.1isEmpty()) e e e
{
v = q.dequeue();

if (lvisited[v]) e G e
{

visited[v] = true;
for (every edge (v, w))
if (lvisited[w])

q.enqueue(w); Order of visitt ABCEDFG

14

Practice time

Orderofvisit: ABSCGDEFH

Example graph from: https://www.youtube.com/watch?v=iaBEKo5sM7w 15

DFS/BFS traversal

« Can be performed in O(n + m), wheren = |V|,m = |E|

e Can:

Test if G is connected
If traversal visited all vertices, then graph is connected

Compute a spanning tree of G, if G is connected
Find a path between two vertices, if it exits

Compute the connected components of G
(needs to loop over all vertices and run DFS/BFS again)

16

Connectivity in Digraphs

« reachable vertices: when there is a directed path from one to
another.

« strongly connected vertices: if mutually reachable

« strongly connected digraph: directed path from every vertex to
every other vertex

« weakly connected graph: a digraph that would be connected if
all of its directed edges were replaced by undirected edges.

Testing connectivity

« For an undirected graph:

« Run DFS/BFS from any vertex without restarting and see if all vertices
are marked

« For strong connectivity on a directed graph:
* 1. Initialize all vertices are not visited
« 2.Run DFS/BFS from an arbitrary vertex v.
If traversal does not visit all vertices return false
« 3. Reverse all edges

* 4, Start from same vertex v and perform DFS/BFS. Graph is
strongly connected iff all vertices are marked as visited again.

18

