
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 34: Graphs II

Number of Edges

• If |"| = $, then:
• minimum number of edges: 0
• A graph can have only nodes

• For simple directed graphs, maximum number: $($ − 1)
• For simple undirected graphs, maximum number: + +,-

.

• Dense graphs à #edges close to maximum
• Sparse graphs à #edges close to $

2

Graph Representations

• Adjacency Matrix
• Adjacency List

3

A B

DC

Adjacency Matrix
A B C D

A 0 1 1 1

B 1 0 0 1

C 1 0 0 0

D 1 1 0 0

4

• Good for dense graphs

• Constant time for lookup for edges.

• Constant time for adding/removing an edge

• Symmetric if undirected.

• Can hold weights.

A B

DC

Adjacency Lists

A B C D

B A D

C A

D A B

5

• Good for sparse graphs, saves space.

• Linear time lookup for edges.

A B

DC

Time complexity comparison

Operation Adjacency Matrix Adjacency List

Store graph !(# $) !(|#| + |(|)
Add vertex !(# $) !(1)
Add edge !(1) !(1)
Remove vertex !(# $) !(|(|)
Remove edge !(1) ! |#|
Are two vertices adjacent? !(1) !(|#|)

6

Spanning Trees

• Tree: connected undirected graph with no cycles
• Spanning tree of !: includes every vertex of ! and is a

subgraph of ! (every edge belongs to !)
• Can have properties like minimum-cost
• Can be constructed by search algorithms

7

A

B C

Graph !

A

B C

A

B C

A

B C

3 different spanning trees of graph !

Depth-First Search

• Explore the graph without revisiting nodes
• Depth-first means go until you hit a dead end, then back up

to branch out

8

A

B C

D F G

E

Example from wikipedia

Recursive DFS pseudocode

DFS(G,v){
visited[v] = true;
for(every edge (v,w)){

if(!visited[w]){
DFS(G,w);

}
}

}

9

A

B C

D F G

E

Order of visit: A B D F E C G

Practice time

10

A

B

C

D

F

G

E

H

S

Order of visit: A B S C D E H G F

Example graph from: https://www.youtube.com/watch?v=iaBEKo5sM7w

Non-recursive DFS pseudocode

for(every vertex v)
visited[v]=false;

s=new Stack();
s.push(v1);
while(!s.isEmpty())
{

v = s.pop();
if (!visited[v])
{

visited[v] = true;
for (every edge (v, w))

if (!visited[w])
s.push(w);

}
}

11

A

B C

D F G

E

Order of visit: A E F B D C G

Practice time

12

A

B

C

D

F

G

E

H

S

Example graph from: https://www.youtube.com/watch?v=iaBEKo5sM7w

Order of visit: A S G H E C F D B

Breadth-First Search

• Replace stack with queue
• Now we explore in order of distance from start

• Algorithm:
1. Mark start vertex
2. Add all unmarked neighbors to queue and mark them
3. Repeat step 2 with next from queue until it’s empty

13

BFS pseudocode

for(every vertex v)
visited[v]=false;

q=new Queue();
q.enqueue(v1);
while(!q.isEmpty())
{

v = q.dequeue();
if (!visited[v])
{

visited[v] = true;
for (every edge (v, w))

if (!visited[w])
q.enqueue(w);

}
}

14

A

B C

D F G

E

Order of visit: A B C E D F G

Practice time

15

A

B

C

D

F

G

E

H

S

Example graph from: https://www.youtube.com/watch?v=iaBEKo5sM7w

Order of visit: A B S C G D E F H

DFS/BFS traversal

• Can be performed in !(# +%), where # = |)|,% = |+|
• Can :
• Test if , is connected

• If traversal visited all vertices, then graph is connected
• Compute a spanning tree of ,, if , is connected
• Find a path between two vertices, if it exits
• Compute the connected components of ,

(needs to loop over all vertices and run DFS/BFS again)

16

Connectivity in Digraphs

• reachable vertices: when there is a directed path from one to
another.

• strongly connected vertices: if mutually reachable
• strongly connected digraph: directed path from every vertex to

every other vertex
• weakly connected graph: a digraph that would be connected if

all of its directed edges were replaced by undirected edges.

17

Testing connectivity

• For an undirected graph:
• Run DFS/BFS from any vertex without restarting and see if all vertices

are marked

• For strong connectivity on a directed graph:
• 1. Initialize all vertices are not visited
• 2. Run DFS/BFS from an arbitrary vertex !.

• If traversal does not visit all vertices return false
• 3. Reverse all edges
• 4. Start from same vertex ! and perform DFS/BFS. Graph is

strongly connected iff all vertices are marked as visited again.

18

