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Volatile

• Atomic action: effectively happens all at once
• x++ is not an atomic action!

• Java contains volatile keyword 
• Changes to a volatile variable are always visible to other 

threads
• Accesses don’t count as data races
• Implementation forces memory consistency
• though slower! 

• Really for experts -- better to use locks.
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Lock granularity

• Coarse-grained: Fewer locks, i.e., more objects per lock
• Example: One lock for entire data structure (e.g., array)
• Example: One lock for all bank accounts

• Fine-grained: More locks, i.e., fewer objects per lock
• Example: One lock per data element (e.g., array index)
• Example: One lock per bank account

• “Coarse-grained vs. fine-grained” is really a continuum.
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Granularity trade-offs

• Coarse-grained advantages:
• Simpler to implement
• Faster/easier to implement operations that access multiple 

locations (because all guarded by the same lock)
• Much easier for operations that modify data-structure shape

• Fine-grained advantages:
• More simultaneous access (performance when coarse-grained 

would lead to unnecessary blocking)

• Guideline: Start with coarse-grained (simpler) and move to 
fine-grained (performance) only if contention on the coarser 
locks becomes an issue. Alas, often leads to bugs. 
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Critical-section granularity

• A second, orthogonal granularity issue is critical section size
• How much work to do while holding lock(s)

• If critical sections run for too long:
• Performance loss because other threads are blocked (contending)

• If critical sections are too short:
• Bugs because you broke up something where other threads should 

not be able to see intermediate state

• Guideline: Don’t do expensive computations or I/O in critical 
sections, but also don’t introduce race conditions
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Don’t roll your own

• Most data structures provided in standard libraries
• Point of lectures is to understand the key trade-offs and 

abstractions

• Especially true for concurrent data structures
• Far too difficult to provide fine-grained synchronization without 

race conditions
• Standard thread-safe libraries like ConcurrentHashMap written by 

world experts

• Guideline: Use built-in libraries whenever they meet your 
needs
• e.g., Vector vs ArrayList. Vector is synchronized, ArrayList

assumes program is thread-safe
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Deadlock
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Deadlock
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The deadlock
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Suppose x and y are static fields holding accounts



Deadlock in general

• A deadlock occurs when there are threads !",… , !% such 
that:
• For & = 1, . . , * − 1, !, is waiting for a resource held by !,-"
• !% is waiting for a resource held by !"

• In other words, there is a cycle of waiting 
• Can formalize as a graph of dependencies with cycles bad 

• Deadlock avoidance in programming amounts to 
techniques to ensure a cycle can never arise
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Back to our example

• Options for deadlock-proof transfer:
1. Make a smaller critical section: transferTo not 

synchronized
• Exposes intermediate state after withdraw before deposit
• May be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing 
transfers between them
• Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always 
acquire locks in the same order
• Entire program should obey this order to avoid cycles
• Code acquiring only one lock can ignore the order

11



Concurrency summary

• Concurrent programming allows multiple threads to access 
shared resources (e.g., hash table, work queue)

• Introduces new kinds of bugs:
• Data races and Bad Interleavings
• Deadlocks

• Requires synchronization
• Locks for mutual exclusion
• Other Synchronization Primitives

• Guidelines for correct use help avoid common pitfalls
• Shared Memory model is not only approach, but other 

approaches (e.g., message passing) are not painless either
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Graphs

• Represent relationships that exist between pairs of objects

• Nothing to do with charts and function plots! 

• Extremely versatile, can be used to represent many 
problems
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The Graph ADT

A graph ! = #, %
• # is a finite, non-empty set of vertices (or nodes)
• % is a binary relation on #

(that is, % is a collection of edges that connects pairs of 
vertices)

• Edges are either directed or undirected
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Applications

• transportation networks (flights, roads, etc.) 
• flights and flight patterns. 
• what sort of questions might we ask? What sort of 

application might we be interested in having a graph?
• booking flights, picking shortest time? shortest distance?
• airlines save fuel, number of people who use the route

• Google maps
• driving directions, mapping out sightseeing
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More Applications

• communications networks/utility networks
• electrical grid, phone networks, computer networks
• minimize cost for building infrastructure
• minimize losses, route packets faster

• social networks
• Does this person know that person.
• Can this person introduce me to that person – job 

opportunities
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Undirected Graphs
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Example: ! = #, % , where 
• # = &, ', (, )
• % = { &, ( , &, ' , &, ) , {', )}

A B
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Definitions for Undirected Graphs

• subgraph: is a subset of a graph's edges (and associated 
vertices) that constitutes a graph.

• path: a sequence of connected vertices. 
• simple path – a path where all vertices occur only once.

• path length: number of edges in the path. 
• Example: path C-A-D-B has length 3.

• cycle: path of length ≥ 1 that begins and ends with the same 
vertex. 
• Example: path A-D-B-A is a cycle. 

• simple cycle: a simple path that begins and ends with the 
same vertex.
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More Definitions for Undirected Graphs

• self loop: Cycle consisting of one edge and one vertex. 
• adjacent vertices: when connected by an edge.
• incident edge: the edge that is incident on two adjacent 

vertices
• Edge (A,B) above is incident on adjacent vertices A and B

• degree: number of incident edges on a vertex.
• simple graph: a graph with no self loops. 
• acyclic graph: a graph with no cycles.
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Even More Definitions for Undirected Graphs

• connected vertices: if path that connects them exists
• connected graph: a graph where every pair of vertices is 

connected by a path. 
• tree: acyclic connected graph
• forest: disjoint set of trees
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Directed Graphs (Digraphs)
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Example: ! = #, % , where 
• # = 1, 3, 9, 13
• % = { 1,3 , 3, 1 , 13,1 , 9,9 (9,13)}

1 3
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Definitions for Digraphs

• subgraph: subset of a digraph's edges (and 
associated vertices) that constitutes a digraph.

• path: sequence of vertices with a (directed) edge 
pointing from each vertex to its successor
• simple path – a path where all vertices occur only once.

• length: number of edges in the path. 
• cycle: directed path of length ≥ 1 that begins and 

ends with the same vertex. 
• simple cycle: a simple path that begins and ends with the 

same vertex.
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More Definitions for Digraphs

• self loop: Cycle consisting of one edge and one 
vertex. 
• Example: 9

• outdegree: number of edges pointing from it.
• indegree: number of edges pointing to it.
• directed acyclic graph (DAG): a digraph with no 

directed cycles.
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Even More Definitions for Digraphs

• reachable vertices: when there is a directed path 
from one to another.

• strongly connected vertices: if mutually reachable
• strongly connected digraph: directed path from 

every vertex to every other vertex
• weakly connected graph: a digraph that would be 

connected if all of its directed edges were replaced 
by undirected edges.
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