
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

Some slides based on those from Dan Grossman, U. of Washington

1

Lecture 33: Concurrency III
& Graphs

Volatile

• Atomic action: effectively happens all at once
• x++ is not an atomic action!

• Java contains volatile keyword
• Changes to a volatile variable are always visible to other

threads
• Accesses don’t count as data races
• Implementation forces memory consistency
• though slower!

• Really for experts -- better to use locks.

2

Lock granularity

• Coarse-grained: Fewer locks, i.e., more objects per lock
• Example: One lock for entire data structure (e.g., array)
• Example: One lock for all bank accounts

• Fine-grained: More locks, i.e., fewer objects per lock
• Example: One lock per data element (e.g., array index)
• Example: One lock per bank account

• “Coarse-grained vs. fine-grained” is really a continuum.

3

Granularity trade-offs

• Coarse-grained advantages:
• Simpler to implement
• Faster/easier to implement operations that access multiple

locations (because all guarded by the same lock)
• Much easier for operations that modify data-structure shape

• Fine-grained advantages:
• More simultaneous access (performance when coarse-grained

would lead to unnecessary blocking)

• Guideline: Start with coarse-grained (simpler) and move to
fine-grained (performance) only if contention on the coarser
locks becomes an issue. Alas, often leads to bugs.

4

Critical-section granularity

• A second, orthogonal granularity issue is critical section size
• How much work to do while holding lock(s)

• If critical sections run for too long:
• Performance loss because other threads are blocked (contending)

• If critical sections are too short:
• Bugs because you broke up something where other threads should

not be able to see intermediate state

• Guideline: Don’t do expensive computations or I/O in critical
sections, but also don’t introduce race conditions

5

Don’t roll your own

• Most data structures provided in standard libraries
• Point of lectures is to understand the key trade-offs and

abstractions

• Especially true for concurrent data structures
• Far too difficult to provide fine-grained synchronization without

race conditions
• Standard thread-safe libraries like ConcurrentHashMap written by

world experts

• Guideline: Use built-in libraries whenever they meet your
needs
• e.g., Vector vs ArrayList. Vector is synchronized, ArrayList

assumes program is thread-safe

6

Deadlock

7

Deadlock

8

The deadlock

9

Suppose x and y are static fields holding accounts

Deadlock in general

• A deadlock occurs when there are threads !",… , !% such
that:
• For & = 1, . . , * − 1, !, is waiting for a resource held by !,-"
• !% is waiting for a resource held by !"

• In other words, there is a cycle of waiting
• Can formalize as a graph of dependencies with cycles bad

• Deadlock avoidance in programming amounts to
techniques to ensure a cycle can never arise

10

Back to our example

• Options for deadlock-proof transfer:
1. Make a smaller critical section: transferTo not

synchronized
• Exposes intermediate state after withdraw before deposit
• May be okay here, but exposes wrong total amount in bank

2. Coarsen lock granularity: one lock for all accounts allowing
transfers between them
• Works, but sacrifices concurrent deposits/withdrawals

3. Give every bank-account a unique number and always
acquire locks in the same order
• Entire program should obey this order to avoid cycles
• Code acquiring only one lock can ignore the order

11

Concurrency summary

• Concurrent programming allows multiple threads to access
shared resources (e.g., hash table, work queue)

• Introduces new kinds of bugs:
• Data races and Bad Interleavings
• Deadlocks

• Requires synchronization
• Locks for mutual exclusion
• Other Synchronization Primitives

• Guidelines for correct use help avoid common pitfalls
• Shared Memory model is not only approach, but other

approaches (e.g., message passing) are not painless either

12

Graphs

• Represent relationships that exist between pairs of objects

• Nothing to do with charts and function plots!

• Extremely versatile, can be used to represent many
problems

13

The Graph ADT

A graph ! = #, %
• # is a finite, non-empty set of vertices (or nodes)
• % is a binary relation on #

(that is, % is a collection of edges that connects pairs of
vertices)

• Edges are either directed or undirected

14

Applications

• transportation networks (flights, roads, etc.)
• flights and flight patterns.
• what sort of questions might we ask? What sort of

application might we be interested in having a graph?
• booking flights, picking shortest time? shortest distance?
• airlines save fuel, number of people who use the route

• Google maps
• driving directions, mapping out sightseeing

15

More Applications

• communications networks/utility networks
• electrical grid, phone networks, computer networks
• minimize cost for building infrastructure
• minimize losses, route packets faster

• social networks
• Does this person know that person.
• Can this person introduce me to that person – job

opportunities

16

Undirected Graphs

17

Example: ! = #, % , where
• # = &, ', (,)
• % = { &, (, &, ' , &,) , {',)}

A B

DC

Definitions for Undirected Graphs

• subgraph: is a subset of a graph's edges (and associated
vertices) that constitutes a graph.

• path: a sequence of connected vertices.
• simple path – a path where all vertices occur only once.

• path length: number of edges in the path.
• Example: path C-A-D-B has length 3.

• cycle: path of length ≥ 1 that begins and ends with the same
vertex.
• Example: path A-D-B-A is a cycle.

• simple cycle: a simple path that begins and ends with the
same vertex.

18

More Definitions for Undirected Graphs

• self loop: Cycle consisting of one edge and one vertex.
• adjacent vertices: when connected by an edge.
• incident edge: the edge that is incident on two adjacent

vertices
• Edge (A,B) above is incident on adjacent vertices A and B

• degree: number of incident edges on a vertex.
• simple graph: a graph with no self loops.
• acyclic graph: a graph with no cycles.

19

Even More Definitions for Undirected Graphs

• connected vertices: if path that connects them exists
• connected graph: a graph where every pair of vertices is

connected by a path.
• tree: acyclic connected graph
• forest: disjoint set of trees

20

Directed Graphs (Digraphs)

21

Example: ! = #, % , where
• # = 1, 3, 9, 13
• % = { 1,3 , 3, 1 , 13,1 , 9,9 (9,13)}

1 3

913

Definitions for Digraphs

• subgraph: subset of a digraph's edges (and
associated vertices) that constitutes a digraph.

• path: sequence of vertices with a (directed) edge
pointing from each vertex to its successor
• simple path – a path where all vertices occur only once.

• length: number of edges in the path.
• cycle: directed path of length ≥ 1 that begins and

ends with the same vertex.
• simple cycle: a simple path that begins and ends with the

same vertex.

22

More Definitions for Digraphs

• self loop: Cycle consisting of one edge and one
vertex.
• Example: 9

• outdegree: number of edges pointing from it.
• indegree: number of edges pointing to it.
• directed acyclic graph (DAG): a digraph with no

directed cycles.

23

Even More Definitions for Digraphs

• reachable vertices: when there is a directed path
from one to another.

• strongly connected vertices: if mutually reachable
• strongly connected digraph: directed path from

every vertex to every other vertex
• weakly connected graph: a digraph that would be

connected if all of its directed edges were replaced
by undirected edges.

24

