
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

Some slides based on those from Dan Grossman, U. of Washington

1

Lecture 31: Concurrency



Concurrent Programming

• Allowing simultaneous or interleaved access to shared 
resources from multiple clients.

• Requires coordination, particularly synchronization to avoid 
incorrect simultaneous access: make somebody block
• join is not what we want
• block until another thread is “done using what we need” not 

“completely done executing”

2



Very complicated, very quickly

• Concurrent code gets very complicated very quickly. Why?
• Concurrency introduces non-determinism!
• In sequential programming, when you run the same 

program multiple times, you get the same result
• This is no longer true for concurrent programs. Threads can 

run in any order giving unpredictable results.
• How threads are scheduled affects what operations from 

other threads they see and when they see them.
• Non-repeatability complicates testing and debugging.

3



Examples

• Multiple threads:
• Processing different bank-account operations
• What if 2 threads change the same account at the same time?

• Using a shared cache of recent files
• What if 2 threads insert the same file at the same time?

• Creating pipeline with queue for handing work to next 
thread in sequence?
• What if enqueuer and dequeuer adjust a circular array queue at the 

same time?

4



Threads again?!

• Not about speed, but code structure for responsiveness
• Example: Respond to GUI events in one thread while 

another thread is performing an expensive computation
• Processor utilization (mask I/O latency)
• If 1 thread “goes to disk,” have something else to do

• Failure isolation
• Convenient structure if we want to interleave multiple tasks and 

don’t want an exception in one to stop the other

5



Sharing is caring

• Common to have different threads access the same 
resources in an unpredictable order or even at about the 
same time

• But program correctness requires that simultaneous access 
be prevented using synchronization

• Simultaneous access is rare
• Makes testing difficult
• Must be much more disciplined when designing / implementing a 

concurrent program
• We will discuss common idioms known to work

6



Canonical Example

7



Canonical Example - Bad interleavings

Interleaved withdraw(100) calls on the same account
Assume initial balance is 150

8



Interleaving is the problem

• Suppose:
• Thread T1 calls withdraw(100)
• Thread T2 calls withdraw(100) 

• If second call starts before first finishes, we say the calls 
interleave
• Could happen even with one processor since a thread can be pre-

empted at any point for time-slicing

• If x and y refer to different accounts, no problem
• “You cook in your kitchen while I cook in mine”
• But if x and y alias, possible trouble…

9



First attempt to fix the problem

It is tempting and almost always wrong to fix a bad interleaving 
by rearranging or repeating operations, such as:

Just because statement is on one line does not mean it 
happens all at once!

10



What we want: Mutual exclusion

• The fix: Allow at most one thread to withdraw from account 
A at a time 
• Exclude other simultaneous operations on A too (e.g., deposit)

• Called mutual exclusion:
• One thread using a resource (here: a bank account) means another 

thread must wait
• We call the area of code that we want to have mutual exclusion 

(only one thread can be there at a time) a critical section.
• Programmer (you!) must implement critical sections:
• “The compiler” has no idea what interleavings should or should not 

be allowed in your program
• But you need language primitives to do it!

11



Our own mutual-exclusion protocol?

• Say we tried to coordinate it ourselves using a boolean busy

• We can check that busy is false, but then it might get set to 
true before we have a chance to set it to true ourselves.

12



What we need

• Mutual-Exclusion Locks (aka Mutex, or just Lock)
• Still on a conceptual level at the moment, Lock is not a Java class 

(though Java’s approach is similar)

• We will define Lock as an ADT with operations:
• new: make a new lock, initially “not held”
• acquire: blocks if this lock is already currently “held”

Once “not held”, makes lock “held” [all at once!]
Checking & setting happen together, and cannot be interrupted –
Fixes problem we saw before!!

• release: makes this lock “not held”
If >= 1 threads are blocked on it, exactly 1 will acquire it

13



Why that works?

• The lock implementation ensures that given simultaneous 
acquires and/or releases, a correct thing will happen

• Example:
• If we have two acquires: one will “win” and one will block

• How can this be implemented?
• Need to “check if held and if not make held” “all-at-once”
• Uses special hardware and O/S support
• More in upper division classes on computer-architecture or 

operating-systems
• Here, we will use a language primitive

14



Almost-correct pseudocode

15

• Problem occurs if amount>b. An exception is thrown and 
lock is never released. Stuck in forever-waiting land

• Assuming getBalance and setBalance are public, they 
should also acquire and release the lock.



Re-entrant Lock idea

• A re-entrant lock (a.k.a. recursive lock)
• The idea: Once acquired, the lock is held by the Thread, and 

subsequent calls to acquire in that Thread won’t block
• Result: withdraw can acquire the lock, and then call 

setBalance, which can also acquire the lock
• Because they’re in the same thread & it’s a re-entrant lock, the inner 

acquire won’t block!!

16



Re-entrant Lock

• ”Remembers”
• The thread (if any) that currently holds it
• a count

• When the lock goes from not-held to held, the count is set to 
0

• If (code running in) the current holder calls acquire :
• it does not block
• it increments the count

• On release :
• if the count is > 0, the count is decremented
• if the count is 0, the lock becomes not-held

17



Re-entrant locks work

• This simple code works fine provided lk is a re-entrant lock
• Okay to call setBalance directly
• Okay to call withdraw (won’t block forever)

int setBalance(int x) {
lk.acquire();
balance = x;
lk.release();

}
void withdraw(int amount) {

lk.acquire(); 
…
setBalance(b – amount);
lk.release();

} 18



Java’s re-entrant locks

• java.util.concurrent.locks.ReentrantLock
• Has methods lock() and unlock() 
• Conceptually owned by the Thread, and shared within that thread
• Important to guarantee that lock is always released!!!
• Recommend something like this: 

myLock.lock(); 
try { // method body }
finally { myLock.unlock(); 
}

• Despite what happens in try, the code in finally will execute 
afterwards

19



Synchronized in Java

• Java has built-in support for re-entrant locks
• You can use the synchronized statement as an alternative 

to declaring a ReentrantLock
• synchronized (expression) { statements }
• 1. Evaluates expression to an object
• Every object (but not primitive types) “is a lock” in Java 

• 2. Acquires the lock, blocking if necessary 
• “If you get past the {, you have the lock”

• 3. Releases the lock “at the matching }” 
• Even if control leaves due to throw, return, etc.
• So impossible to forget to release the lock!

20



Version #1 - Correct but can be 
improved

21



What’s the problem?

• As written, the lock is private
• Might seem like a good idea
• But also prevents code in other classes from writing operations that 

synchronize with the account operations

• More idiomatic is to synchronize on this…
• Also more convenient: no need to have an extra object!

22



Version #2

23



Syntactic sugar

• Version #2 is slightly poor style because there is a shorter 
way to say the same thing

• Putting synchronized before a method declaration means 
the entire method body is surrounded by 
synchronized(this){…}

• Therefore, version #3 (next slide) means exactly the same 
thing as version #2 but is more concise

24



Final version

25


