
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

Some slides based on those fom Dan Grossman, U. of Washington

1

Lecture 26: Parallelism I

The story so far assumed…

• Sequential programming: everything is part of one
sequence and happens one thing at a time
• E.g., in Java start at main() , one assignment/call/return/arithmetic

operation at a time

2

Recipe – Step 1 Recipe – Step 2 Recipe – Step 3 …

Multi-threaded programming

In multi-threaded programming we need to rethink:
• Programming: work is divided among threads of execution that

need to be coordinated (synchronized)
• Algorithms: parallelism increases the work done per unit time

(throughput)
• Data Structures: need to provide concurrent access if multiple

threads access the same data

3

A simplified view of history

• Writing correct and efficient multithreaded code is often
much more difficult than sequential code
• Especially in common languages like Java and C
• So typically stay sequential if possible

• From roughly 1980-2005, desktop computers got twice as
fast every couple years at running sequential programs

• But nobody knows how to continue this
• Increasing clock rate generates too much heat
• Relative cost of memory access is too high
• But we can keep making “wires exponentially smaller” (Moore’s

“Law”), so put multiple processors on the same chip (“multicore”)

4

What can we do with multiple cores?

• Run multiple totally different programs at the same time
• Already doing that, but with time-slicing

• Do multiple things at once in one program
• Our focus – more difficult
• Requires rethinking everything from asymptotic complexity to how

to implement data-structure operations

5

Parallelism vs Concurrency – Separate Terms

• Parallelism: Use extra resources to solve a problem faster
• Concurrency: Correctly and efficiently manage shared

resources
• Common ground:
• They both use threads
• If parallel computations need access to shared resources, then the

concurrency needs to be managed

6

Parallelism

7

Recipe – Step 1

Recipe – Step 2

Recipe – Step 3

…

…

…

Sometimes we might have to wait for one cook to finish their step

Concurrency

8

Recipe – Step 1

Recipe – Step 2

Recipe – Step 3

…

…

How do we handle access to a common resource?

Program state in sequential programming

9

Calling a method pushes a new frame

Returning from a method pops it

Heap holds objects, instance variables, and static variables

Multiple Threads/Processors Model

• A set of threads, each with its own call stack & program
counter

• No access to another thread’s local variables
• Threads can (implicitly) share static fields / objects
• To communicate, write somewhere another thread reads

10

Shared memory

Threads, each with own unshared call stack & current statement
• (pc for “program counter”)
• local variables are primitives, null, or heap references

11

Program state in parallel programming

12

When a new thread runs, it has its own call stack

