
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 24: Maps & Dictionaries



Map ADT

• Collection of disjoint entries that are associations between a 
key and a value

• Store and retrieve value fast based on a key.
• Store phone numbers by name.
• Store word pair frequencies by first word.
• Store account info by user ID. 

• Cannot contain duplicate keys; at most one value per key 
(matches the mathematical concept). 

• Also known as “dictionaries”, “symbol tables” or “associative 
arrays”.

2



Interface

3

• size: number of (key,value) entries in map
• put: a new (key,value) entry in map. Return old value replaced 

if key already exists or null .
• get: returns the corresponding value (or null) given a key
• To distinguish null (no entry with such key was found) from 

null ((key,null) entry), use containsKey
• remove:delete the entry with key and return corresponding 

value. Return null if no entry with such key exists



Interface

4



Example

• OfficeNumbers = {}

• put(“YW”, 111) à null 
OfficeNumbers = {(“YW”, 111) }

• put(“EB”, 221) à null 
OfficeNumbers = {(“YW”, 111), (“EB”, 221) }

• put(“KB”, 112) à null
OfficeNumbers = {(“YW”, 111), (“EB”, 221), (“KB”, 112) }

• put(“YC”, 223) à null
OfficeNumbers = {(“YW”, 111), (“EB”, 221), (“KB”, 112), (“YC”, 223) }

• get(“KB”) à 112
OfficeNumbers = {(“YW”, 111), (“EB”, 221), (“KB”, 112), (“YC”, 223) }

• get(“AP”) à null
OfficeNumbers = {(“YW”, 111), (“EB”, 221), (“KB”, 112), (“YC”, 223) }

• put(“EB”, 127) à 221
OfficeNumbers = {(“YW”, 111), (“EB”, 127), (“KB”, 112), (“YC”, 223) }

5



Map Implementations

Data Structure get put remove

List !(#) !(#) !(#)
Array !(#) !(#) !(#)

Sorted list !(%&'#) !(#) !(#)
Balanced BST !(%&'#) !(%&'#) !(%&'#)

Array[“key range”] !(1) !(1) !(1)

6

Last row is array where keys are subscripts



Problem

• Goal: Array-like performance for all keys 

• Problems: 
• Keys are not integers 

(and there is no obvious way to convert them)

• Key range may be large or infinite 
(and keys may be sparse)
• Suppose use SS#’s as subscripts to table of students

7



Hashing

8

Map data of arbitrary size (keys) to data of fixed size (indices)

Hans Luhn, Nat Rochester, Gene Amdahl, Elaine McGraw, Arthur Samuel, 1953



HashMaps

• Array-like implementations of maps that provide !(1) storing, 
deletion, and lookup of values given a key

• Components:
• Hash table: array of % “buckets”
• Hash function: to compute index of bucket, that is maps key to 

0,… , % − 1
• Value returned by hash function: hash code, hash value, or hash

9



Ex: 10 buckets, ℎ(%) = %%10
• (21,”A”), (2,”D”), (22,”G”), (43,”K”), (6,”L”), (36,”O”), (9,”W”) }

10

(21,”A”) (2,”D”)
(22,”G”)

(43,”K”) (6,”L”)
(36,”O”)

(9,”W”)

0 1 2 3 4 5 6 7 8 9

Lookup: Given key %, compute ℎ(%), find value in entry stored in ℎ(%)-indexed 
bucket 

e.g., Lookup 21, ℎ(21) = 1, return (21, ”,”)



Perfect Hashing

11

• Should be !(1).
• Should return an integer.
• The integers for & keys should be 0…&-1.
• Must be a unique integer for every object.
• That is, it should be bijective. 

• equal keys should lead to equal hashes
• E.g., String s1 = “hello”, String s2 = “hello”, if hash function is 

memory address of key, the hashrd of s1 and s2 would be different!

• So important that hashCode function built-in to Java classes.



Hash Functions

• Look for reasonable function that scatters elements through 
array randomly so they won’t bump into each other

• Lose any ordering on keys
• Ideal is to find value in time !(1)
• We want to:
• Find good hashing functions
• Figure out what to do if 2 elements are sent to same location

• “A given hash function must always be tried on real data in 
order to find out whether it is effective or not.”

12



Handling and Equality

13
https://en.wikipedia.org/wiki/Java_hashCode()



Problems

• What to do when results aren’t unique?

• What about objects with .equals? 

• How can we get a good distribution of results?

14


