
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 23: Balanced Binary
Search Trees

Rotating Binary Trees

2

Key idea: Rotate node higher in tree while keeping it in order.14.5 Splay Trees 355

y

Left rotation

Right rotation

BA

C A

B C

y x

x

Figure 14.4 The relation between rotated subtrees.

but in all other ways, the tree remains the same. In particular, there is no
structural effect on the tree above the original location of node y. A left rotation
is precisely the opposite of a right rotation; these operations are inverses of each
other.

The code for rotating a binary tree about a node is a method of the
class. We show, here, ; a similar method performs a left Finally, a right

handed
method!

rotation.

For each rotation accomplished, the nonroot node moves upward by one
level. Making use of this fact, we can now develop an operation to splay a tree
at a particular node. It works as follows:

Rotating Trees

3

• Rotate Α to root (Right rotation)
• All nodes in subtrees α go up one level,

all in γ go down one level, all in β stay same.

• Rotate Β to root (Left Rotation)
• All nodes in subtrees γ go up one level,

all in α go down one level, all in β stay same.

• See code in BinaryTree.java

Shifting elements toward root

• Move x up two levels w/ two rotations
• If x is left child of a left child…

4

356 Search Trees

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

• If x is the root, we are done.

• If x is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. x becomes the root and we are done.

• If x is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at x with this
new tree.

• If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at x in the new tree.

After the splay has been completed, the node x is located at the root of the
tree. If node x were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 14.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these

Shifting elements toward root

• If x is a right child of a left child…

5

356 Search Trees

(a)

(b)

g

p

x

x

p x

g

g

x

p

g

x

p

g

p

x

g p

Figure 14.5 Two of the rotation pairs used in the splaying operation. The other cases
are mirror images of those shown here.

• If x is the root, we are done.

• If x is a left (or right) child of the root, rotate the tree to the right (or left)
about the root. x becomes the root and we are done.

• If x is the left child of its parent p, which is, in turn, the left child of its
grandparent g, rotate right about g, followed by a right rotation about p
(Figure 14.5a). A symmetric pair of rotations is possible if x is a left child
of a left child. After double rotation, continue splay of tree at x with this
new tree.

• If x is the right child of p, which is the left child of g, we rotate left about
p, then right about g (Figure 14.5b). The method is similar if x is the left
child of a right child. Again, continue the splay at x in the new tree.

After the splay has been completed, the node x is located at the root of the
tree. If node x were to be immediately accessed again (a strong possibility),
the tree is clearly optimized to handle this situation. It is not the case that the
tree becomes more balanced (see Figure 14.5a). Clearly, if the tree is splayed at
an extremal value, the tree is likely to be extremely unbalanced. An interesting
feature, however, is that the depth of the nodes on the original path from x to
the root of the tree is, on average, halved. Since the average depth of these

Symmetric if interchangeable left and right

Splay Trees

• Self-adjusting Binary Search Trees
• Fast access to elements accessed recently (locality)

• Every time contains, add or remove an element x, move it
to the root by a series of rotations (splay x)

• Splay trees are balanced
• But are not strictly balanced, unlike AVL trees
• On average height is !(log &)
• Worst case height is !(&)
• Average and worst case amortized cost is ! log & for all

operations

• Popular: caches, garbage collectors, routing
6

Splay operations

• Zig
• Zag

• Zig-zig
• Zag-zag

• Zig-zag
• Zag-zig

7

Zig or Zag: node is child of root

8

y

x

T1 T2

T3

T3T2

T1

x

y

Zig
(Right Rotation on (x,y)

Zag
(Left Rotation on (x,y)

Zig-zig (Left Left case)

9

G

P

x

T1

T2

T3

T4

Node x has both parent P and grandparent G. Both x and P are the left children of their parents.

G

P

x

T1

T2

T3

T4

P

Gx

T4T3T2T1

Right Rotation on (P,G) Right Rotation on (x,P)

Zag-zag (Right Right case)

10

x

P

G

T1

T2

T3

T4

Node x has both parent P and grandparent G. Both x and P are the right children of their parents.

P

G

T3T2T1x

P

G

T1

T2

T3

T4

Left Rotation on (x,P)

x

T4

Left Rotation on (P,G)

Zig-zag (Left Right case)

11

Node x has both parent P and grandparent G. x is right child and P is left child of their parents.

G

P

xT1

T3

T4

T2

G

x

P

T1

T2

T3

T4

T1

x

P

T3T2T1

G

T4

Left Rotation on (x,P)

Right Rotation on (x,G)

Zag-zig (Right Left case)

12

Node x has both parent P and grandparent G. x is left child and P is right child of their parents.

G

P

x

T1

T3

T4

T2

G

x

P

T1

T2

T3

T4

x

G

T3T2T1

P

T4

Left Rotation on (x,G)

Right Rotation on (x,P)

Operation sketches

• contains: Use locate method of BSTs. Splay the located
node

• add: Use add method of BSTs and then splay node

• remove: Use contains to splay the node to be removed to
the root. Delete it. You now have two independent trees. Find
predecessor in left tree and splay it. Make root of right subtree
its right child.

• https://www.cs.usfca.edu/~galles/visualization/SplayTree.html

13

Practice time

• add : 8 1 80 50 2 60 90 51

14

Practice time

• contains: 2

15

Practice time

• remove: 50

16

Why splay trees?

• In some applications, 80% of the time is spent approximately on
20% of all items

• Splay trees bring the most frequently-accessed items closer to the
root, significantly reducing the search time (think of binary search
on a BST) à locality of reference

• Performance analysis of BSTs in system software. Pfaff (2014)
https://dl.acm.org/citation.cfm?id=1005742

• Self-Adjusting Binary Search Trees. Sleator and Tarjan (1985)

17

1999 ACM Paris Kanellakis Award

https://dl.acm.org/citation.cfm?id=1005742

