Lecture 20: Priority
Queues & Heapsort

CS 62

Fall 2018
Alexandra Papoutsaki & William Devanny



Priority Queues

A collection of entries that are inserted in such a way as to
allow them to be dequeued in decreasing priority.

Entries can be either a pair of (key, value) or just values.
structure5 assumes the 2nd.

Lowest value has highest priority.

Examples: OS scheduler, ER, airport, etc.



Priority Queue ADT

public interface PriorityQueue<E extends Comparable<E>>{
public E remove(); //removes the element with smallest value
public E getFirst(); //fetches lowest valued item from queue
public void add(E value); //adds a value to the PQ
public boolean isEmpty();
public int size();
public void clear();



Priority Queue implementations

1. Asregular queue (array or linked list based) where either
keep in order or search for lowest to remove:

«  One of add or remove will be 0(n)

2. Heap representation (in arraylist):
« 0(logn) for both add and remove. More efficient
* Insertinto heap:
Place in next free position
"Percolate” it up.
* Remove:
remove root
move last element in array up to root.
"Push” it down.
« Peek element with highest priority in 0(1)



VectorHeap

Class in structure5s

Most heap operations, including insert and remove, execute in
logarithmic time, but the minimum element can be returned in
constant time.

PriorityQueue in standard Java



Treesort

« Build Binary search tree from the elements to be sorted
(will cover later)

* Adding one elementis on average 0(logn)
* Adding n elementsis O(nlogn)
« Iftreeis unbalanced, adding one element is 0(n), therefore worst
case complexity 0(n?)
 Traverse the tree (in-order traversal) so that elements come
out in sorted order
c 0(n)

« O(nlogn) in best & average case and 0(n?) in worst case
* Heapsortis always better!



HeapSort

* Make vector into a heap (depending on definition of priority
max or min heap):

* ninstert operations = O(nlogn)

* Remove elements in order (the root since it contains
smallest) and insert it into a sorted array. Keep updating
heap
* mnremove operations = O(nlogn)
 Total: 0O(nlogn)

 If clever, can make into heap in O(n) (1/2 vertices are leaves)
« ... butstill 0(nlogn) total.

* 0(1) extra space (for swaps)

« https://visualgo.net/en/heap



Comparing Sorts

* Quicksort:
 fastest on average 0(nlogn), but worst case is 0(n?)
« Takes O(logn) extra space

* Heapsort:
* O(nlogn)in average & worst case. No extra space.
« A bitslower on average than quicksort and mergesort.

* Mergesort:
« O(nlogn)in average and worst case.
* 0(n) extra space.

« On-disk mergesort performs well on external files where not all fit
In memory



