
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

1

Lecture 20: Priority 
Queues & Heapsort



Priority Queues

A collection of entries that are inserted in such a way as to 
allow them to be dequeued in decreasing priority.

Entries can be either a pair of (key, value) or just values.
structure5 assumes the 2nd. 

Lowest value has highest priority.

Examples: OS scheduler, ER, airport, etc.

2



Priority Queue ADT

public interface PriorityQueue<E extends Comparable<E>>{
public E remove(); //removes the element with smallest value
public E getFirst(); //fetches lowest valued item from queue 
public void add(E value); //adds a value to the PQ
public boolean isEmpty();
public int size();
public void clear();

}

3



Priority Queue implementations

1. As regular queue (array or linked list based) where either 
keep in order or search for lowest to remove: 
• One of add or remove will be ! "

2. Heap representation (in arraylist):
• !(log ") for both add and remove. More efficient
• Insert into heap:

• Place in next free position
• “Percolate” it up.

• Remove:
• remove root
• move last element in array up to root.
• “Push” it down.

• Peek element with highest priority in !(1)

4



VectorHeap

Class in structure5

Most heap operations, including insert and remove, execute in 
logarithmic time, but the minimum element can be returned in 
constant time.

PriorityQueue in standard Java

5



Treesort

• Build Binary search tree from the elements to be sorted
(will cover later)
• Adding one element is on average !(log &)
• Adding & elements is !(& log &)
• If tree is unbalanced, adding one element is ! & , therefore worst 

case complexity ! &)
• Traverse the tree (in-order traversal) so that elements come 

out in sorted order
• !(&)

• !(& log &) in best & average case and !(&)) in worst case
• Heapsort is always better!

6



HeapSort

• Make vector into a heap (depending on definition of priority 
max or min heap):
• ! instert operations = " ! log !

• Remove elements in order (the root since it contains 
smallest) and insert it into a sorted array. Keep updating 
heap
• ! remove operations = " ! log !
• Total: " ! log !

• If clever, can make into heap in " ! (1/2 vertices are leaves)
• ... but still "(! log !) total. 
• "(1) extra space (for swaps)

• https://visualgo.net/en/heap
7



Comparing Sorts

• Quicksort:
• fastest on average !(# log #), but worst case is ! #(
• Takes !(log #) extra space

• Heapsort:
• !(# log #) in average & worst case. No extra space.
• A bit slower on average than quicksort and mergesort. 

• Mergesort: 
• !(# log #) in average and worst case. 
• !(#) extra space.
• On-disk mergesort performs well on external files where not all fit 

in memory

8


