| ecture 2: Java & Javadoc

CS 62

Fall 2018
Alexandra Papoutsaki & William Devanny

Instance Variables

e or member variables or fields

 Declared in a class, but outside of any method, constructor or
block

 Each object has its own copy of the variable!
* Invoked as: myObject.variableName

Static Variables

e or class variables

e static means constant, i.e. it will be constant for all instances of
the class

 cannot be defined in method body
* Invoked as: myClass.variableName

Local Variables

e Declared in method, constructor or block
* Destroyed after the execution of the method
* No access modifier

Methods

* A collection of grouped statements that perform a logical operation and

control the behavior of objects

* Syntax:
» modifier return-type method-name(type parameter-name,...X...}
« e.g., public int enrollInClass(int classID){..}

 Signature: method name and the number, type, and order of its parameters.

Not return type
« Can also be static, therefore shared by all instances of a class

» Can be overloaded (same name, different parameters)

this

* Within an instance method or a constructor used to refer to current
object
e can be used to call instance variables, methods, and constructors

public class Car{
private String color;

ublic Car(){
P this(gﬁndefined”);

public Car(String color){
this.color = color;

¥

Combination of variables and methods

e Instance methods can access instance variables and instance
methods directly.

* Instance methods can access static variables and static
methods directly.

« Static methods can access static variables and static methods
directly.

e Static methods cannot access instance variables or instance
methods directly—they must use an object reference.
« “"Cannot make a static reference to the non-static field” in main
method

* Static methods cannot use the this keyword as there is no
instance for this to refer to.

Exercise: Bicycle. java

 Write the class B1cycle that contains the following fields:
- cadence
- gear
« speed
« 1d
« numberOfBicycles

* Primitive types or objects?
e Instance variables or static? Instantiate?

Exercise: Bicycle. java

public class Bicycle {

private int cadence;
private int gear;
private int speed;
private int 1id;

private static int numberOfBicycles = 0;

Exercise: Bicycle. java

* Write the appropriate getters and setters for these variables

10

public int getID(Q) {
return 1id;
¥

public static int getNumberOfBicycles() {
return numberOfBicycles;
ks

public int getCadence() {
return cadence;
¥

public void setCadence(int cadence) {
this.cadence = cadence;

}

public int getGear(D{
return gear;
ks

public void setGear(int gear) {
this.gear = gear;

}

public int getSpeed() {
return speed;
}

11

Exercise: Bicycle. java

» Create a non-parameterized constructor that sets the id to the number
of bicycles and increases the counter

public Bicycle() {
1d = ++numberOfBicycles;

}
 Create a constructor that takes 3 parameters: cadence, gear, speed.
How can you use the previous constructor?

public Bicycle(int cadence, int speed, int gear) {
this(Q);
this.cadence = cadence;
this.gear = gear;
this.speed = speed;

12

Exercise: Bicycle. java

« Write a main method within your class
* Print the total number of bicycles

* Create an object (unknown) using the non-parameterized
constructor

* Print its gear field

* Create an object (myBike) passing the following 3 arguments
(2, 3, 5).

* Print its speed
* Print the total number of bicycles

13

Exercise: Bicycle. java

public static void main (String args[]) {
System.out.println(Bicycle.numberOfBicycles);
Bicycle unknown = new Bicycle();
System.out.printlnCunknown.getGear());
Bicycle myBike = new Bicycle(2,3,5);
System.out.println(myBike.getSpeed());
System.out.println(Bicycle.getNumberOfBicycles());

14

A vocabulary refresher for variables

 Declaration: state the type of variable and its identifier. A variable can only be
declared once. E.g. int x;

« Initialization: the first time a variable takes a value. E.g., X = 3;
« Can be combined with declaration, e.g., int y = 3;

« Assignment: discarding the old value and replacing it with a new.
* X =2

» Static or instance variables are automatically initialized with default values, i.e.
null for objects, 0 for int, false for boolean, etc.

* Local variables are not automatically initialized and your code won't compile if
you have not initialized them and you are trying to use them. E.g.,
public void foo() {
int x;
System.out.println(x);
//The local variable x might not have been initialized

15

Inheritance

* When you want to create a new class and there is already a class that
includes some of the code you want your new class to have, you can

derive the new class from the existing class = reuse code!

« We say that a class extends or inherits another class

* E.g., public class Car extends Vehicle
« Car is asubclass of Vehicle
« Vehicle isasuperclass of Car

« Car IS-A Vehicle

16

Inheritance in Java

A subclass inherits all of the public and protected members of parent

* Hiding: same name of variables or of static method between super and

subclass

» Overriding: same signature of instance methods between super and

subclass Vehicle

* Single inheritance!

* A class can only extend ONE AND ONLY ONE class

e Multilevel inheritance

+ Class SUV extends class Car which extends class Vehicle

Example: Animal . java

public class Animal {

public int legs = 2;

public static String species = "Animal";

public static void testClassMethod() {
System.out.println("The static method in Animal");

¥

public void testInstanceMethod() {
System.out.println("The instance method in Animal™);

18

Example: Cat. java

public class Cat extends Animal {

public int legs = 4;

public static String species = "Cat";

public static void testClassMethod() {
System.out.println("The static method in Cat");

¥

public void testInstanceMethod() {
System.out.println("The instance method in Cat");

19

Hiding vs Overriding

public static void main(String[] args) {
Cat myCat = new CatQ);
myCat.testClassMethod(); //invoking a hidden method
myCat.testInstanceMethod(); //invoking an overridden method
System.out.println(myCat.legs); //accessing a hidden field
System.out.println(myCat.species); //accessing a hidden field

» QOutput: “The static method in Cat\nThe instance method in Cat\n4\nCat"
» What you were expecting, right?

20

Hiding vs Overriding

public static void main(String[] args) {
Animal yourCat = new Cat(Q);
yourCat.testClassMethod(); //invoking a hidden method
yourCat.testInstanceMethod(); //invoking an overridden method

System.out.println(yourCat.legs); //accessing a hidden field
System.out.println(yourCat.species); //accessing a hidden field

}

Output: “The static method in Animal\nThe instance method in Cat\n2\nAnimal”

Hiding: For fields (instance+static) and methods (static) the class is determined at
compile-time. Here, the compiler sees that yourCat is declared as Animal.

Overriding: For instance methods this is determined at run-time. At this point,
we know that yourCat is of type Cat

One form of polymorphism (dynamic)

21

super keyword

refers to the direct parent class of the current class
super.variable (for hidden fields > avoid altogether)
super.instanceMethod() (for overridden methods)

super(args) —> to call the constructor of the superclass

e Firstline in subclass constructor

22

All classes inherit Object

* Directly (if they do not extend any other class) or indirectly

» Object class has methods (and more):

« public boolean equals (Object other)
* Default behavior returns true only if same object
« public String toString(Q)
* Returns string representation of object - default is hexadecimal
* Does not print the string
» Typically needs to be overridden to be useful
« public int hashCode()

+ Unique identifier defined so that if a.equals(b) then a, b have same hashCode

23

final

* variable - only assigned once in its declaration or in
constructor - its value cannot change initialization

« Often paired with static, e.g., static final Pl = 3.14;

* method - cannot be overridden by subclass

e class - cannot be extended

24

abstract

e Class - cannot be instantiated but can be extended

* Method - declared without an implementation
* no braces and body, just semicolon
« public abstract int enrollInClass(int classID);

e |[f a class has at least one abstract method then it should be
declared abstract itself

* If you extend an abstract class either declare subclass as
abstract too or implement all abstract methods

25

Interfaces

« Contracts on how the program should work, abstracting from
|mp|ementat|on

« public interface Moveable{..}

* A class can implement many interfaces
« public class Car extends Vehicle implements Moveable

* Variables - implicitly public, static, and final
* Methods - implicitly public (abstract, default, or static)
e Cannot be instantiated

« Can extend any number of interfaces

Eubllc 1nterFace GroupedInterface extends Interfacel,
nterface?

26

Example: Moveable interface

public interface Moveable{
int turn(Direction direction, double radius, double speed);

default int stop(){
speed=0;
}

public class Car extends Vehicle implements Moveable{
int turn(Direction direction, double radius, double speed){
, //code goes here

27

Abstract Classes vs Interfaces

« Can declare fields thatare + All fields are public, static,

not static and final final

 Can define public, * All methods are public
protected, private concrete
methods

* Can extend only one class * Can implement any number
whether or not abstract of interfaces

28

Nested class

* A class defined within a class
class Outer{

static class Nested{..}
class Inner{.}

¥

* Logically groups classes that are only used once in one place
* Increases encapsulation
* Better code

29

Enum Types

* Example

- enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}

* Operations:
- int compareTo(Suit other)
- String toString(Q)
« int ordinal() returns position in its enum declaration. starts with 0
- static Suit valueOf(String name)

- static Suit[] values() returns array of all values

30

Documentation

* Important for code maintainability
« This matters even for 15t week assignments

» Critical when working on a team

* Create documentation first— this is design work!

31

JavaDoc

* Document generation system
* Reads JavaDoc comment >HTML pages

« JavaDoc comment = description written in HTML + tags
* Enclosed in /** */
» Must precede class, variable, constructor or method declaration

» Read the style guide

32

JavaDoc

« Common tags:

e for class:
author name - classes and interfaces
date - classes and interfaces

* for method:
param name and description - methods and constructors
value returned, if any - methods
description of any exceptions thrown - methods

33

Packages

« Use them! E.g., package assignmentl; ... before everything else

* Package name == folder name

« Helps organize large projects e.g, java. lang>fundamental

* Import a package member: import package.member;
 Import an entire package: import package.*;

34

public class IdentifyMyParts {
public static int x = 7;
public int y = 3;

ky

* What s the output from the following code:

IdentifyMyParts a new IdentifyMyParts();
IdentlfyMyParts b = new IdentifyMyParts();

Cly=5,
b.y =6
a.x = 1;
b.x = 2;

System out.println

("a.
System.out.println("b.
System.out. prlntln("a
("b.
("I

System.out.println _
ntify

System.out.println

=+ + + +
o Q T QA
OOX XK KL
(g A A A
Nweve e we

YFd

awll] uolsany

IdentifyMyParts.x);

