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Instance Variables

e or member variables or fields

 Declared in a class, but outside of any method, constructor or
block

 Each object has its own copy of the variable!
* Invoked as: myObject.variableName



Static Variables

e or class variables

e static means constant, i.e. it will be constant for all instances of
the class

 cannot be defined in method body
* Invoked as: myClass.variableName



Local Variables

e Declared in method, constructor or block
* Destroyed after the execution of the method
* No access modifier



Methods

* A collection of grouped statements that perform a logical operation and

control the behavior of objects

* Syntax:
» modifier return-type method-name(type parameter-name,...X...}
« e.g., public int enrollInClass(int classID){..}

 Signature: method name and the number, type, and order of its parameters.

Not return type
« Can also be static, therefore shared by all instances of a class

» Can be overloaded (same name, different parameters)



this

* Within an instance method or a constructor used to refer to current
object
e can be used to call instance variables, methods, and constructors

public class Car{
private String color;

ublic Car(){
P this(gﬁndefined”);

public Car(String color){
this.color = color;

¥



Combination of variables and methods

e Instance methods can access instance variables and instance
methods directly.

* Instance methods can access static variables and static
methods directly.

« Static methods can access static variables and static methods
directly.

e Static methods cannot access instance variables or instance
methods directly—they must use an object reference.
« “"Cannot make a static reference to the non-static field” in main
method

* Static methods cannot use the this keyword as there is no
instance for this to refer to.



Exercise: Bicycle. java

 Write the class B1cycle that contains the following fields:
- cadence
- gear
« speed
« 1d
« numberOfBicycles

* Primitive types or objects?
e Instance variables or static? Instantiate?



Exercise: Bicycle. java

public class Bicycle {

private int cadence;
private int gear;
private int speed;
private int 1id;

private static int numberOfBicycles = 0;



Exercise: Bicycle. java

* Write the appropriate getters and setters for these variables
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public int getID(Q) {
return 1id;
¥

public static int getNumberOfBicycles() {
return numberOfBicycles;
ks

public int getCadence() {
return cadence;
¥

public void setCadence(int cadence) {
this.cadence = cadence;

}

public int getGear(D{
return gear;
ks

public void setGear(int gear) {
this.gear = gear;

}

public int getSpeed() {
return speed;
}
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Exercise: Bicycle. java

» Create a non-parameterized constructor that sets the id to the number
of bicycles and increases the counter

public Bicycle() {
1d = ++numberOfBicycles;

}
 Create a constructor that takes 3 parameters: cadence, gear, speed.
How can you use the previous constructor?

public Bicycle(int cadence, int speed, int gear) {
this(Q);
this.cadence = cadence;
this.gear = gear;
this.speed = speed;
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Exercise: Bicycle. java

« Write a main method within your class
* Print the total number of bicycles

* Create an object (unknown) using the non-parameterized
constructor

* Print its gear field

* Create an object (myBike) passing the following 3 arguments
(2, 3, 5).

* Print its speed
* Print the total number of bicycles
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Exercise: Bicycle. java

public static void main (String args[]) {
System.out.println(Bicycle.numberOfBicycles);
Bicycle unknown = new Bicycle();
System.out.printlnCunknown.getGear());
Bicycle myBike = new Bicycle(2,3,5);
System.out.println(myBike.getSpeed());
System.out.println(Bicycle.getNumberOfBicycles());
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A vocabulary refresher for variables

 Declaration: state the type of variable and its identifier. A variable can only be
declared once. E.g. int x;

« Initialization: the first time a variable takes a value. E.g., X = 3;
« Can be combined with declaration, e.g., int y = 3;

« Assignment: discarding the old value and replacing it with a new.
* X =2

» Static or instance variables are automatically initialized with default values, i.e.
null for objects, 0 for int, false for boolean, etc.

* Local variables are not automatically initialized and your code won't compile if
you have not initialized them and you are trying to use them. E.g.,
public void foo() {
int x;
System.out.println(x);
//The local variable x might not have been initialized
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Inheritance

* When you want to create a new class and there is already a class that
includes some of the code you want your new class to have, you can

derive the new class from the existing class = reuse code!

« We say that a class extends or inherits another class

* E.g., public class Car extends Vehicle
« Car is asubclass of Vehicle
« Vehicle isasuperclass of Car

« Car IS-A Vehicle
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Inheritance in Java

A subclass inherits all of the public and protected members of parent

* Hiding: same name of variables or of static method between super and

subclass

» Overriding: same signature of instance methods between super and

subclass Vehicle

* Single inheritance!

* A class can only extend ONE AND ONLY ONE class

e Multilevel inheritance

+ Class SUV extends class Car which extends class Vehicle



Example: Animal . java

public class Animal {

public int legs = 2;

public static String species = "Animal";

public static void testClassMethod() {
System.out.println("The static method in Animal");

¥

public void testInstanceMethod() {
System.out.println("The instance method in Animal™);
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Example: Cat. java

public class Cat extends Animal {

public int legs = 4;

public static String species = "Cat";

public static void testClassMethod() {
System.out.println("The static method in Cat");

¥

public void testInstanceMethod() {
System.out.println("The instance method in Cat");
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Hiding vs Overriding

public static void main(String[] args) {
Cat myCat = new CatQ);
myCat.testClassMethod(); //invoking a hidden method
myCat.testInstanceMethod(); //invoking an overridden method
System.out.println(myCat.legs); //accessing a hidden field
System.out.println(myCat.species); //accessing a hidden field

» QOutput: “The static method in Cat\nThe instance method in Cat\n4\nCat"
» What you were expecting, right?
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Hiding vs Overriding

public static void main(String[] args) {
Animal yourCat = new Cat(Q);
yourCat.testClassMethod(); //invoking a hidden method
yourCat.testInstanceMethod(); //invoking an overridden method

System.out.println(yourCat.legs); //accessing a hidden field
System.out.println(yourCat.species); //accessing a hidden field

}

Output: “The static method in Animal\nThe instance method in Cat\n2\nAnimal”

Hiding: For fields (instance+static) and methods (static) the class is determined at
compile-time. Here, the compiler sees that yourCat is declared as Animal.

Overriding: For instance methods this is determined at run-time. At this point,
we know that yourCat is of type Cat

One form of polymorphism (dynamic)
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super keyword

refers to the direct parent class of the current class
super.variable (for hidden fields > avoid altogether)
super.instanceMethod() (for overridden methods)

super(args) —> to call the constructor of the superclass

e Firstline in subclass constructor
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All classes inherit Object

* Directly (if they do not extend any other class) or indirectly

» Object class has methods (and more):

« public boolean equals (Object other)
* Default behavior returns true only if same object
« public String toString(Q)
* Returns string representation of object - default is hexadecimal
* Does not print the string
» Typically needs to be overridden to be useful
« public int hashCode()

+ Unique identifier defined so that if a.equals(b) then a, b have same hashCode
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final

* variable - only assigned once in its declaration or in
constructor - its value cannot change initialization

« Often paired with static, e.g., static final Pl = 3.14;

* method - cannot be overridden by subclass

e class - cannot be extended
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abstract

e Class - cannot be instantiated but can be extended

* Method - declared without an implementation
* no braces and body, just semicolon
« public abstract int enrollInClass(int classID);

e |[f a class has at least one abstract method then it should be
declared abstract itself

* If you extend an abstract class either declare subclass as
abstract too or implement all abstract methods
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Interfaces

« Contracts on how the program should work, abstracting from
|mp|ementat|on

« public interface Moveable{..}

* A class can implement many interfaces
« public class Car extends Vehicle implements Moveable

* Variables - implicitly public, static, and final
* Methods - implicitly public (abstract, default, or static)
e Cannot be instantiated

« Can extend any number of interfaces

Eubllc 1nterFace GroupedInterface extends Interfacel,
nterface?
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Example: Moveable interface

public interface Moveable{
int turn(Direction direction, double radius, double speed);

default int stop(){
speed=0;
}

public class Car extends Vehicle implements Moveable{
int turn(Direction direction, double radius, double speed){
, //code goes here
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Abstract Classes vs Interfaces

« Can declare fields thatare  + All fields are public, static,

not static and final final

 Can define public, * All methods are public
protected, private concrete
methods

* Can extend only one class  * Can implement any number
whether or not abstract of interfaces
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Nested class

* A class defined within a class
class Outer{

static class Nested{..}
class Inner{.}

¥

* Logically groups classes that are only used once in one place
* Increases encapsulation
* Better code
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Enum Types

* Example

- enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}

* Operations:
- int compareTo(Suit other)
- String toString(Q)
« int ordinal() returns position in its enum declaration. starts with 0
- static Suit valueOf(String name)

- static Suit[] values() returns array of all values
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Documentation

* Important for code maintainability
« This matters even for 15t week assignments

» Critical when working on a team

* Create documentation first— this is design work!
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JavaDoc

* Document generation system
* Reads JavaDoc comment >HTML pages

« JavaDoc comment = description written in HTML + tags
* Enclosed in /** */
» Must precede class, variable, constructor or method declaration

» Read the style guide
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JavaDoc

« Common tags:

e for class:
author name - classes and interfaces
date - classes and interfaces

* for method:
param name and description - methods and constructors
value returned, if any - methods
description of any exceptions thrown - methods
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Packages

« Use them! E.g., package assignmentl; ... before everything else

* Package name == folder name

« Helps organize large projects e.g, java. lang>fundamental

* Import a package member: import package.member;
 Import an entire package: import package.*;
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public class IdentifyMyParts {
public static int x = 7;
public int y = 3;

ky

*  What s the output from the following code:

IdentifyMyParts a new IdentifyMyParts();
IdentlfyMyParts b = new IdentifyMyParts();

Cly=5,
b.y =6
a.x = 1;
b.x = 2;

System out.println
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