
CS 62
Fall 2018

Alexandra Papoutsaki & William Devanny

Lecture 2: Java & Javadoc

1

Instance Variables

• or member variables or fields
• Declared in a class, but outside of any method, constructor or

block
• Each object has its own copy of the variable!
• Invoked as: myObject.variableName

2

Static Variables

• or class variables
• static means constant, i.e. it will be constant for all instances of

the class
• cannot be defined in method body
• Invoked as: myClass.variableName

3

Local Variables

• Declared in method, constructor or block
• Destroyed after the execution of the method
• No access modifier

4

Methods

• A collection of grouped statements that perform a logical operation and

control the behavior of objects

• Syntax:

• modifier return-type method-name(type parameter-name,…){…}

• e.g., public int enrollInClass(int classID){…}
• Signature: method name and the number, type, and order of its parameters.

Not return type

• Can also be static, therefore shared by all instances of a class

• Can be overloaded (same name, different parameters)

5

this
• Within an instance method or a constructor used to refer to current

object
• can be used to call instance variables, methods, and constructors

public class Car{
private String color;

public Car(){
this(“undefined”);

}
public Car(String color){

this.color = color;
}

6

Combination of variables and methods

• Instance methods can access instance variables and instance
methods directly.
• Instance methods can access static variables and static

methods directly.
• Static methods can access static variables and static methods

directly.
• Static methods cannot access instance variables or instance

methods directly—they must use an object reference.
• “Cannot make a static reference to the non-static field” in	main

method

• Static methods cannot use the this keyword as there is no
instance for this to refer to.

7

Exercise: Bicycle.java

• Write the class Bicycle that contains the following fields:
• cadence
• gear
• speed
• id
• numberOfBicycles

• Primitive types or objects?
• Instance variables or static? Instantiate?

8

Exercise: Bicycle.java

public class Bicycle {

private int cadence;
private int gear;
private int speed;
private int id;

private static int numberOfBicycles = 0;

9

Exercise: Bicycle.java

• Write the appropriate getters and setters for these variables

10

public int getID() {
return id;

}

public static int getNumberOfBicycles() {
return numberOfBicycles;

}
public int getCadence() {

return cadence;
}

public void setCadence(int cadence) {
this.cadence = cadence;

}
public int getGear(){

return gear;
}
public void setGear(int gear) {

this.gear = gear;
}
public int getSpeed() {

return speed;
}

11

Exercise: Bicycle.java
• Create a non-parameterized constructor that sets the id to the number

of bicycles and increases the counter

public Bicycle() {
id = ++numberOfBicycles;

}
• Create a constructor that takes 3 parameters: cadence, gear, speed.

How can you use the previous constructor?

public Bicycle(int cadence, int speed, int gear) {
this();
this.cadence = cadence;
this.gear = gear;
this.speed = speed;

}

12

Exercise: Bicycle.java

• Write a main method within your class
• Print the total number of bicycles
• Create an object (unknown) using the non-parameterized

constructor
• Print its gear field
• Create an object (myBike) passing the following 3 arguments

(2, 3, 5).
• Print its speed
• Print the total number of bicycles

13

Exercise: Bicycle.java

public static void main (String args[]) {
System.out.println(Bicycle.numberOfBicycles);
Bicycle unknown = new Bicycle();
System.out.println(unknown.getGear());
Bicycle myBike = new Bicycle(2,3,5);
System.out.println(myBike.getSpeed());
System.out.println(Bicycle.getNumberOfBicycles());

}

14

A vocabulary refresher for variables

• Declaration: state the type of variable and its identifier. A variable can only be
declared once. E.g. int x;

• Initialization: the first time a variable takes a value. E.g., x = 3;
• Can be combined with declaration, e.g., int y = 3;

• Assignment: discarding the old value and replacing it with a new.
• x = 2;

• Static or instance variables are automatically initialized with default values, i.e.
null for objects, 0 for int, false for boolean, etc.

• Local variables are not automatically initialized and your code won’t compile if
you have not initialized them and you are trying to use them. E.g.,
public void foo() {

int x;
System.out.println(x);
//The local variable x might not have been initialized

}

15

Inheritance

• When you want to create a new class and there is already a class that

includes some of the code you want your new class to have, you can

derive the new class from the existing class à reuse code!

• We say that a class extends or inherits another class

• E.g., public class Car extends Vehicle

• Car is a subclass of Vehicle
• Vehicle is a superclass of Car

• Car IS-A Vehicle

16

Vehicle

Car

Inheritance in Java

• A subclass inherits all of the public and protected members of parent

• Hiding: same name of variables or of static method between super and

subclass

• Overriding: same signature of instance methods between super and

subclass

• Single inheritance!

• A class can only extend ONE AND ONLY ONE class

• Multilevel inheritance

• Class SUV extends class Car which extends class Vehicle

17

Vehicle

Car

SUV

Example: Animal.java
public class Animal {

public int legs = 2;
public static String species = "Animal";
public static void testClassMethod() {

System.out.println("The static method in Animal");
}
public void testInstanceMethod() {

System.out.println("The instance method in Animal");
}

}

18

Example: Cat.java
public class Cat extends Animal {

public int legs = 4;
public static String species = "Cat";
public static void testClassMethod() {

System.out.println("The static method in Cat");
}
public void testInstanceMethod() {

System.out.println("The instance method in Cat");
}

}

19

Hiding vs Overriding

public static void main(String[] args) {
Cat myCat = new Cat();
myCat.testClassMethod(); //invoking a hidden method
myCat.testInstanceMethod(); //invoking an overridden method
System.out.println(myCat.legs); //accessing a hidden field
System.out.println(myCat.species); //accessing a hidden field

}

• Output: “The static method in Cat\nThe instance method in Cat\n4\nCat”

• What you were expecting, right?

20

Hiding vs Overriding

public static void main(String[] args) {
Animal yourCat = new Cat();
yourCat.testClassMethod(); //invoking a hidden method
yourCat.testInstanceMethod(); //invoking an overridden method
System.out.println(yourCat.legs); //accessing a hidden field
System.out.println(yourCat.species); //accessing a hidden field

}
• Output: “The static method in Animal\nThe instance method in Cat\n2\nAnimal”

• Hiding: For fields (instance+static) and methods (static) the class is determined at
compile-time. Here, the compiler sees that yourCat is declared as Animal.

• Overriding: For instance methods this is determined at run-time. At this point,
we know that yourCat is of type Cat

• One form of polymorphism (dynamic)

21

super keyword

• refers to the direct parent class of the current class

• super.variable (for hidden fields à avoid altogether)

• super.instanceMethod() (for overridden methods)

• super(args) à to call the constructor of the superclass

• First line in subclass constructor

22

All classes inherit Object

• Directly (if they do not extend any other class) or indirectly

• Object class has methods (and more):

• public boolean equals (Object other)
• Default behavior returns true only if same object

• public String toString()
• Returns string representation of object – default is hexadecimal

• Does not print the string

• Typically needs to be overridden to be useful

• public int hashCode()
• Unique identifier defined so that if a.equals(b) then a, b have same hashCode

23

final

• variable – only assigned once in its declaration or in
constructor – its value cannot change initialization
• Often paired with static, e.g., static final PI = 3.14;

• method – cannot be overridden by subclass

• class - cannot be extended

24

abstract

• Class – cannot be instantiated but can be extended

• Method – declared without an implementation
• no braces and body, just semicolon
• public abstract int enrollInClass(int classID);

• If a class has at least one abstract method then it should be
declared abstract itself

• If you extend an abstract class either declare subclass as
abstract too or implement all abstract methods

25

Interfaces

• Contracts on how the program should work, abstracting from
implementation
• public interface Moveable{…}

• A class can implement many interfaces
• public class Car extends Vehicle implements Moveable

• Variables – implicitly public, static, and final
• Methods – implicitly public (abstract, default, or static)
• Cannot be instantiated
• Can extend any number of interfaces

• public interface GroupedInterface extends Interface1,
Interface2

26

Example: Moveable interface

public interface Moveable{
int turn(Direction direction, double radius, double speed);

default int stop(){
speed=0;

}
}

public class Car extends Vehicle implements Moveable{
int turn(Direction direction, double radius, double speed){

//code goes here
}

}

27

Abstract Classes vs Interfaces

• Can declare fields that are
not static and final

• Can define public,
protected, private concrete
methods

• Can extend only one class
whether or not abstract

28

• All fields are public, static,
final

• All methods are public

• Can implement any number
of interfaces

Nested class

• A class defined within a class
class Outer{

…
static class Nested{…}
class Inner{…}

}

• Logically groups classes that are only used once in one place
• Increases encapsulation
• Better code

29

Enum Types

• Example

• enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}

• Operations:

• int compareTo(Suit other)

• String toString()

• int ordinal() returns position in its enum declaration. starts with 0

• static Suit valueOf(String name)

• static Suit[] values() returns array of all values

30

Documentation

• Important for code maintainability
• This matters even for 1st week assignments

• Critical when working on a team

• Create documentation first— this is design work!

31

JavaDoc

• Document generation system
• Reads JavaDoc comment àHTML pages

• JavaDoc comment = description written in HTML + tags

• Enclosed in /** */

• Must precede class, variable, constructor or method declaration

• Read the style guide

32

http://www.quickmeme.com/meme/3ph7ed

JavaDoc

• Common tags:
• for class:

• @author author name – classes and interfaces
• @version date - classes and interfaces

• for method:
• @param param name and description – methods and constructors
• @return value returned, if any – methods
• @throws description of any exceptions thrown - methods

33

Packages

• Use them! E.g., package assignment1; … before everything else

• Package name == folder name

• Helps organize large projects e.g, java.langàfundamental

• Import a package member: import package.member;
• Import an entire package: import package.*;

34

public class IdentifyMyParts {
public static int x = 7;
public int y = 3;

}
• What is the output from the following code:

IdentifyMyParts a = new IdentifyMyParts();
IdentifyMyParts b = new IdentifyMyParts();
a.y = 5;
b.y = 6;
a.x = 1;
b.x = 2;
System.out.println("a.y = " + a.y);
System.out.println("b.y = " + b.y);
System.out.println("a.x = " + a.x);
System.out.println("b.x = " + b.x);
System.out.println("IdentifyMyParts.x = "+ IdentifyMyParts.x);

35

Q
uestion	Tim

e

