Lecture 16: Binary Trees

CS 62

Fall 2018

Alexandra Papoutsaki & William Devanny

Trees in CS

- Trees are abstract data types that store elements hierarchically
- Great when the linear, "before" and "after", relationship is not enough
 - Certain operations are much faster too
- Hierarchical: Each element in a tree has a parent (an immediate ancestor) and zero or more children (immediate descendant)
- Trees in CS grow upside down!

Definition of a tree

- A tree T is a set of nodes that store elements based on a parent-child relationship:
 - If T is non-empty, it has a node called the root of T, that has no parent
 - Each node v, other than the root, has a unique **parent** node u. Every node with parent u is a **child** of u.

Recursive definition of a tree

- A tree *T* is either:
 - Empty or
 - Consists of a node r, called the root node of T, and a (possibly empty) disjoint set of trees, called its *subtrees*, whose roots are the children of r. These trees are disjoint from each other and the root.

Example: Unix File System

Example: Binary Search Tree

Example: Expression Tree

If node is a leaf, then value is variable or constant

• If node is internal, then value calculated by applying

Family Tree Terminology

• **Edge** is a pair of nodes s.t. one is the parent of the other e.g., (K,C)

Parent node is directly above child node:

• K is parent to C, N.

- *Sibling* node has same parent:
 - A, F
- K is ancestor of B
- B is descendant of K
- Node plus all descendants gives subtree
- Nodes without successors are called leaves or external. The rest are called internal
- A set of trees is called a forest

More Terminology

 Simple path is series of distinct nodes s.t. there is edge between successive nodes.

• Path length = # edges in path

 Height of node = length of longest path to a leaf

- **Height of tree** = height of root
- Degree of node is # of children
- Degree of tree (arity) = max degree of any its nodes
- Binary tree has arity ≤ 2 .

Even More Terminology

- Level/depth of node defined recursively:
 - Root is at level 0
 - Level of any other node is one greater
 A
 than level of parent
- Level of node is also length of path from root to the node or number of ancestors
- Height of node defined recursively:
 - If node is leaf then 0
 - Else height is max height of child + 1

But wait, there's more!

A tree is **ordered** if there is a meaningful linear order among the children of each node, e.g., when modeling books.

In contrast, when we're modeling an organization tree is unordered.

A binary tree is **full** (or proper) if every node has 0 or 2 children

A **complete** tree has minimal height and any holes in tree would appear in last level to right, i.e. all nodes are as far left as possible.

In a **perfect** binary tree all internal nodes have two children, ie. all leaves are at the same level.

A tree is height **balanced** iff at every node the difference in heights of subtrees is no greater than one and both left and right subtrees are balanced.

Neither complete nor full

Complete but not full

Full but not complete

Complete and full

https://cs.stackexchange.com/questions/54171/is-a-balanced-binary-tree-a-complete-binary-tree

Counting

- Lemma: if T is a binary tree, then at level k, T has $\leq 2^k$ nodes.
- Theorem: If T has height h, then # of nodes n in T: $h+1 \le n \le 2^{h+1}-1.$
- Equivalently, if T has n nodes then $\log(n+1) 1 \le h \le n-1$

Binary Trees in Java

- No implementation in standard Java libraries
- structure5 has BinaryTree<E> class, but no interface (though we provide one!).
- Like doubly-linked list:
 - value: E
 - parent, left, right: BinaryTree<E>

Binary Tree ADT

```
public interface BinaryTreeInterface<E> {
    public BinaryTreeInterface<E> left
    public BinaryTreeInterface<E> right
    public BinaryTreeInterface<E> parent();
    public E value;

//getters, setters, iterators and other helper methods
}
```

This is just an example interface, structure5. BinaryTree doesn't implement it!

Linked Representation

Tree Traversals

- Traversals:
 - Pre-order: root, left subtree, right subtree
 - In-order: left subtree, root, right subtree
 - Post-order: left subtree, right subtree, root
 - Level-order: all nodes of level i before i + 1
- Most traversal algorithms have two parts:
 - Build tree
 - Traverse tree, performing operations on nodes

Tree traversals

Pre-order: K C A B F D H N M V U

In-order: A B C D F H K M N U V

Post-order: B A D H F C M U V N K

Level-order: K C N A F M V B D H U

Question time

List the nodes in pre-order, in-order, post-order, and level order

