Parallelism Lab 8
Wednesday, November 1, 2017 CSC 062: Fall, 2017

Introduction

In this lab, we’ll once again be playing with sorting algorithms! This time our goal is to make them more
efficient by using parallelism. You may work in pairs on this lab.
We'll also be using git a tiny bit more in this lab.

Getting Started

The starter files for this lab can be found in /common/cs/cs062/1labs/1ab08. However, instead of copying
them like you usually do, we’ll use git to create a synchronized clone of them. Start by opening up a terminal
and cding into your workspace directory. Then enter the following command to create a clone of the starter
code:

git clone /common/cs/cs062/labs/1ab08
It should say:

Cloning into ‘1ab08’...
done.

As we saw in the last lab, git is a tool that keeps track of different versions of code and allows you to
combine versions from multiple sources. It also allows you to roll back to a previous version if you find out
that you made a mistake.

By cloning a repository, you have just created a copy of the starter code, along with all of its history of
changes, in such a way that you can now add your own changes and then eventually send them back to the
origin repository.

Let’s look at the history of the starter code by typing git log. This will show you a record of each
commit, which is a set of changes that someone added to the repository. When you do this, you’ll notice
that something isn’t quite right—the most recent commit says something about introducing errors!

Luckily, with git we can always go back in time if we made a mistake. To do this, type:

git checkout 4664560

This will temporarily update your code to a specific version (The number 4664560 was the (unique) start
of one of the commit numbers from the git log output (and you could have tab-completed it by typing
46<TAB>)). By doing this, you can look at a specific version of the code, but if you type git status, you’ll
see that it says ¢ ‘HEAD detached.’’ This rather troubling state of affairs happens when the current version
you're looking at (called HEAD) isn’t the most recent version on a branch. When you make changes, it’s best
to add them to the end of a branch, so that things don’t get too confused.

To list the current branches, use git branch. You'll see that there’s a branch called error, which you're
currently on, and another branch called master, which is the default branch in git. So let’s see what’s
in the master branch: run git checkout master and then git log. Now you should see a commit that
reverts the errors introduced in the error branch. Effectively, the error branch is a dead-end that’s now
out-of-date. Note, if we wanted to see what the errors were, we could run git diff 1f2ce3c 5ef789b (or
just git diff master error) to have git print out the exact differences between the fixed version and the
error version. If we wanted to convince ourselves that the error really was reverted, we could run git diff
master 466d560 and hope that it prints out nothing — no changes between the current master branch and
the original commit 466d560.

This is as far as we’ll go with git this lab. At this point, we need to import this code into Eclipse. The
best way to do this is actually to start a “New Java Project” and uncheck the “Use default location” box,
telling it instead to use the code that we just got using git.



The Quicksort Code

You will notice that this version of Quicksort is a bit clunkier than earlier versions you have seen. It
is invoked by creating a new QSManager and then invoking its run method. Similarly each recursive call
creates a new QSManager and then calls its run method. The reason for the extra overhead of creating new
objects for each call is to make it easier to generalize this for parallel execution.

The program also prints out the first 10 elements of the sorted array so that you can make sure the array
is correctly sorted after you make modifications to the code later in the lab.

Start by running the main method of QSManager to get timing information on Quicksort. Notice that
the code runs the sort routine 10 times to “warm up” the code, and then runs it another 10 times to get
timing values. It reports each of those times as well as the minimum of those 10 times. Please answer these
questions. You can open up a text editor and write your answers there if you wish.

1. Why is there variance in these numbers? (Hint: it is more than just the application continuing to
warm up.)

2. Write down the minimum time for 10,000 elements and 20,000 elements by changing the value of
the constant NUM_ELEMENTS. Do these numbers make sense given our analysis of the big-O complexity of
quicksort?

Running in Parallel
Modify the code in QSManager so that the recursive calls run in parallel. This can be accomplished by making
QSManager extend Thread and invoking it with start rather than run when you want to start a separate
thread. (Refer to the “Parallelism and Concurrency” text or your lecture notes for additional details).

We would like the code to run as efficiently as possible, so only create a single new thread when you make
the recursive calls (and the initial call can also run in the same thread as the rest of the main program). Your
code should be very similar to that of our final attempt at summing an array using Java’s Thread class.
Don’t forget to wait for the new thread to complete before returning from the run method. Also, be careful
of the order that you write the code to ensure that it really runs in parallel and not sequentially. Using this
version of the program, write down the minimum times for 10,000 and 20,000 elements in the array.

3. Explain why you think this version of QuickSort is faster or slower (depending on your results) than
the previous version.

Using the ForkJoin Environment
Now that you have it running in parallel, make it even faster using the ForkJoin framework from Java
7. This version should be similar to the code examples from lectures except that your class will extend
RecursiveAction rather than RecursiveTask (because compute needs no return value). Make sure that
QSManager imports the appropriate classes from java.util.concurrent. Using this version of the program,
write down the minimum times for 10,000 and 20,000 elements in the array. Also, answer the following
question:

4. Explain why you think this version of QuickSort is faster (or slower, depending on your results) than
the previous versions.

= \What to Hand In
Save your answers to the questions above and the times for the three different versions of the program for
10,000 and 20,000 elements in a text file named answers.txt. Export your Eclipse code as usual and submit
answers.txt along with your bin/ and src/ directories as usual. Don’t forget to put both your name and
your partner’s name in the . json file.




