
Binary Trees
Wednesday, October 18, 2017

Lab 6
CSC 062: Fall, 2017

Introduction

In this lab, we will experiment with Bailey’s BinaryTree class. Begin by looking at the documentation
for the BinaryTree class∗. For today, pay special attention to the constructors and these methods:

value() isEmpty()

left() iterator()

right() toString()

setLeft(BinaryTree<E> newLeft) height()

setRight(BinaryTree<E> newRight)

We will use this class to construct some examples of binary search trees whose values are integers. For a
binary search tree the value contained in a node n is

• greater than all the values contained in nodes of the left subtree rooted at n, and

• less than or equal to all the values contained in nodes of the right subtree rooted at n.

By saying “less than or equal to,” we are implicitly allowing duplicate values. It is a decision that can be
changed easily.

Notice that Bailey has a class called BinarySearchTree which automates most of the operations on
binary search trees. We will not use it today because we want you to experience the joy of manipulating
trees directly.

A simple example
Draw by hand a binary search tree with 2 at the root and values 1, 3, and 4 in the subtrees. How many
different tree structures are possible?

Next, start Eclipse and create a new project for this laboratory (note that you will need to include the
BAILEY variable for this lab). There is no starter code for this lab. Create a class called Lab06. Inside this
class, write a method to construct the tree you just drew and print it out using the toString method. You
can call this method, constructSimpleTree.

Note that there are three constructors for the BinaryTree<E> class: no data, one data item and one
data item with two children. If you need a BinaryTree with only one child (with a data value) you’ll need
to specify the other child as an empty tree.

Notice how the toString methods prints out the trees and in particular, the empty trees.

Inserting values
A more realistic exercise is to start with an empty tree and insert many new nodes. Write a method insert

that takes a tree and a new value, and inserts a node with that value into the tree. The method returns the
new binary tree (We need to return a tree to handle the case when we construct a new tree. See the note at
the end).

public static BinaryTree<Integer> insert(BinaryTree<Integer> tree,

Integer value)

There are two cases. If the original tree is empty, then we simply create a new one-element tree and return
it, effectively discarding the old tree. If the original tree is not empty, then we navigate through it until we
get to an empty subtree and replace that empty subtree with a one-element tree. We return the original,
recently modified, tree.

Test your insert method by writing a different method that:

1. creates an empty tree

∗http://www.cs.williams.edu/∼bailey/JavaStructures/doc/structure5/index.html

1



2. inserts, in order, 2, 4, 1, and 3

3. prints the resulting tree.

What happens if you insert in a different order, for example 2, 3, 1, 4 or 2, 1, 3, 4?

Bigger trees

Now that everything is working, write a method biggerTrees that inserts 128 random integers. Printing
such a tree would not be very enlightening. Instead, use the iterator method and print the sequence of
values generated; they should appear in non-decreasing order. The java.util.Random class will be useful
for this.

Tree heights
Finally, conduct some experiments on heights of trees. Create a method called randomTreeHeights. Inside
this method, you should determine the heights of several randomly-constructed 128-node trees and see how
they compare. What is the theoretical minimum height? Do your trees ever come close? Can you artificially
create a tree with the theoretical maximum height?

Calculate the average height over 100 random trees. Is the average height closer to the minimum or
maximum? We stated in class that a binary search tree with randomly added data maintains a height that
is O(logn). Does your data support this?

Write the answer to these questions in the JavaDoc comments for the randomTreeHeights method.

Philosophical reflection.
The implementation of the insert method reveals a serious shortcoming of the BinaryTree class in this
context. The object-oriented paradigm tells us that we ought to be able to insert an element into a tree
object by modifying the internal state of the object. However, it is not obvious how to change an empty
BinaryTree into a non-empty one. Therefore, we end up writing an assignment statement—and changing a
reference instead of an object:

tree = insert(tree, value);

instead of just insert(tree, value); Later, we will discuss ways to overcome the defect and to make the
insertion process more uniform.

One CAN transform an empty tree into a non-empty one: set the value to a non-null object, and create
new empty trees for the subtrees. However, that requires one to have distinct empty trees everywhere.
Bailey’s original (non-generic) device of using only one empty tree won’t work, and his compromise of using
the same tree for empty left and right subtrees won’t work either.

What to Hand In
You should export your Eclipse project, rename the folder appropriately, include an lab06.json file (you
can copy and rename any previous .json file) and use the submit script to turn it in:

/common/cs/cs062/bin/submit cs062 lab06 Lab06 Names If you are working with a partner, please
make sure that both names are in the .json file, the JavaDoc comments, and the name of the directory that
you submit.

2


