Computer Science 62
Bruce/Mawhorter — Fall ‘16
Midterm Examination

October 5, 2016

Question Points Score
1 15 -
2 10 -
3 10 -
4 8 .
5 9 _
TOTAL 52

Your name (Please print)




CS 062 Midterm 3/5/2012

1. Suppose you are given a singly-linked list class that holds strings and that
maintains pointers to both the head and the tail of the list. Its fields and
constructors are as follows:

public class SinglyLinkedList {
protected ListNode head;
protected ListNode tail;

public SinglyLinkedList() {
this.head = null;
this.tail = null;

}

The ListNode class looks like this:

public class ListNode {
private String value;
private ListNode next;

public ListNode(String value, ListNode next) {
this.value = value;
this.next = next;

}

public String getValue() {
return this.value;
}

public ListNode getNext() {
return this.next;
}

public String setValue(String newValue) {
this.value = newValue;
}

public ListNode setNext(ListNode newNext) {
this.next = newNext;
}

}



CS 062 Midterm 3/5/2012

Please add a new method to the class SinglyLinkedList with header:

public void keep(int howMany) {
which should modify the list so it only keeps the first howMany elements,
dropping the rest of the elements from the list. E.g., if myList originally contains
10 elements, then executing myList.keep(6) should result in myList having
only the first 6 elements of the list. You don't need to worry about keeping track of
the discarded nodes as long as you cut them off from the rest of the list.

a. Write the pre- and post- conditions for the keep method. Just describe them
in English.

b. List at least one special case that either violates your preconditions or requires
special handling.

c. Write the code for keep on the next page (you don't need to worry about
comments). Remember that you should check your preconditions (you can use
"RuntimeError" if you need to throw any exceptions).



CS 062 Midterm 3/5/2012

public void keep(int howMany) {



CS 062 Midterm 3/5/2012

2. You have a singly linked list with only a head pointer (see the
figure below). The insert () method for the list inserts new
values into the list so that the elements remain in sorted order
using the obvious algorithm. In other words, after each

insertion, the

list is in
sorted order.

a. l Assume you

head

are given a

sequence of n
1 0}—» 2 o\—» .+ @ N values to
insert one at

a time into
the list. What do you expect the total worst-case running time
to be, using big-O notation, for inserting all of the values into
the list? Give a brief (one to two sentence) justification for
your answer.

b. Suppose that the sequence of n values to be inserted just
happen to be in reverse sorted order. E.g., you might be
given the elements 47, 23, 19, 13, 7, 6, and finally 2. What
do you expect the running time to be, using big-O notation,
for inserting all of n values into the list? Give a brief (one to
two sentence) justification for your answer.



CS 062 Midterm 3/5/2012

3. Suppose we have a list of ints held as an ArrayList. As you may recall, the elements
of the list are held in an array elts, with instance variable eltsFilled keeping track of
the number of elements in the list. The standard implementation of an iterator for an

ArrayList presents the elements of the array (one at a time) from slot O to slot
eltsFilled -1.

However, for a particular application we want to design a special iterator (call it
inOrderlterator) that presents the elements of the list in numeric order. Please
describe in words (no Java code necessary) how you would initialize the iterator (i.e.,
what the constructor would do), and how you would write the hasNext() and
next() methods.

You may assume that the iterator is an inner class of the ArrayList
class (thus giving it access to the instance variables of ArrayList).
The initialization of the iterator should take no more than O (n log
n) time in the worst case (where n is the size of the list) and the
methods next() and hasNext() should each be O(1). The contents of
the array elts should not be modified by the construction or use of
the iterator. You may use any extra storage needed to create the
iterator.



CS 062 Midterm 3/5/2012

4. An advantage of using stacks and queues is that their limited
number of operations allows more efficient representation than
more general data structures. Please answer the following
questions about the complexity of operations on queues, expressing
all answers in big-O notation.

A queue may be represented by a “circular” implementation on an
array (or ArrayList) or by a singly linked list with a reference to
both the front and rear. Please give the complexity of the following
queue operations on a queue of size n for each representation,
including one or two sentences justifying your answer.

i) Enqueuing an element at the rear of the queue with a

circular array:

linked list:

ii) Dequeing an element from the front of the queue with a

circular array:

linked list:



CS 062 Midterm 3/5/2012

5. Short answer

a. Describe carefully in words what happens when you insert an element into an
ArrayList when it is already filled to capacity.

b. We noted that when using Java graphics, we must call the
method repaint (which the programmer doesn’t write) in order to
get the computer to eventually call the method paint, which is the
one the programmer actually writes. Please explain why this
happens and what data structure that we have discussed in class is
used to make this all work.

c. Explain how the run-time stack changes when a method is
invoked and when the method completes execution.



